Oxidative heat treatment of 316L stainless steel for effective catalytic growth of carbon nanotubes

被引:48
|
作者
Zhuo, Chuanwei [1 ]
Wang, Xin [1 ]
Nowak, Welville [1 ]
Levendis, Yiannis A. [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
关键词
Multi-walled carbon nanotubes; Catalyst; Heat treatment; 316L stainless steel; CNT forests; CHEMICAL-VAPOR-DEPOSITION; CARBONIZATION; FILMS; CO; POLYPROPYLENE; POLYETHYLENE; ARRAYS; NI2O3; STATE; MO;
D O I
10.1016/j.apsusc.2014.05.189
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Substrates consisting of stainless steel (SS) type 316L have been typically considered as non-responsive to catalytic formation of multi-walled carbon nanotubes (MW-CNTs) because of the protective chromium oxide layers on their surfaces. In current practices lengthy multi-step pretreatments are needed to break down these protective layers. This study oxidized 3161 SS wire mesh in air, at 800 degrees C, for time periods ranging from 1 to 20 min prior to its use as a substrate catalyst for CNT synthesis from pyrolyzate gases of polyethylene, i.e., a mixture of hydrocarbons and hydrogen. The shortest pretreatment of the substrate (1 min) produced the maximum yield of CNTs (0.0145 g/g of catalyst) in these experiments, whereas longer pretreatments resulted in progressively lower yields. The 10 min pretreatment produced MWCNT forests vertically growing in planes perpendicular to the substrate surface (the periphery of the cylindrical wires of the mesh), 20 mu m long and 21 nm in diameter on the average. Shorter (1-9 min) or longer (11-20 min) substrate heat treatments did not produce aligned CNTs at this temperature. Oxidative heat treatments of the substrate lengthier than 20 min did not produced any nanotubes. The results demonstrated an expedient and cost-effective method to activate the 316L SS substrate, and resulted in controllable CNT growth. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 50 条
  • [21] Etching of 316L Stainless Steel by Different Chemical Etchant Solutions for the Growth of Carbon Nanotubes by Thermal Chemical Vapour Deposition
    Cheraghali, R.
    Moradi, Sh
    Ghoranneviss, M.
    Azar, P. Aberomand
    Khorrami, S. A.
    ASIAN JOURNAL OF CHEMISTRY, 2011, 23 (07) : 2833 - 2836
  • [22] HEAT TREATMENT TECHNOLOGY FOR STAINLESS STEEL 316(L)
    Bahfie, F.
    Prawijaya, K. I.
    Lana, S. S.
    Nurjaman, F.
    Astuti, W.
    Susanti, D.
    USPEKHI FIZIKI METALLOV-PROGRESS IN PHYSICS OF METALS, 2022, 23 (04): : 729 - 743
  • [23] Enhanced Corrosion Resistance of Additively Manufactured 316L Stainless Steel After Heat Treatment
    Zhou, Chengshuang
    Wang, Jing
    Hu, Shiyin
    Tao, Huimin
    Fang, Bei
    Li, Long
    Zheng, Jinyang
    Zhang, Lin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [24] INFLUENCE OF ANNEALLING HEAT TREATMENT ON PITTING CORROSION RESISTANCE OF STAINLESS STEEL TYPE 316L
    Bakhtiari, Amirreza
    Berenjani, I.
    METALLURGICAL & MATERIALS ENGINEERING, 2014, 20 (02) : 97 - 105
  • [25] Hydrogenated amorphous carbon films deposited on 316L stainless steel
    Kluba, A.
    Bociaga, D.
    Dudek, M.
    DIAMOND AND RELATED MATERIALS, 2010, 19 (5-6) : 533 - 536
  • [26] Stress Relieving Heat Treatment of 316L Stainless Steel Made by Additive Manufacturing Process
    Gel'atko, Matus
    Hatala, Michal
    Botko, Frantisek
    Vandzura, Radoslav
    Hajnys, Jiri
    Sajgalik, Michal
    Torok, Jozef
    MATERIALS, 2023, 16 (19)
  • [27] Fatigue crack initiation and crystallographic growth in 316L stainless steel
    Sistaninia, M.
    Niffenegger, M.
    INTERNATIONAL JOURNAL OF FATIGUE, 2015, 70 : 163 - 170
  • [28] Numerical computation for prediction of grain growth on stainless steel 316L
    Muhammad, Norasiah
    Manurung, Yupiter H. P.
    Mat, Muhd Faiz
    Ghani, Mohamad Syakir Abdul
    Graf, Marcel
    Adams, Tom-Eric
    Kassim, Khairulnizam
    Adenan, Shahriman
    6TH INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING 2019 (ICAME 2019), 2020, 834
  • [29] Diffusion bonding of 316L stainless steel
    Hu R.
    Ji K.
    Wang Y.
    Wang D.
    Yang Z.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2023, 44 (05): : 1 - 6
  • [30] Biocompatibility of MIM 316L stainless steel
    Shai-hong Zhu
    Guo-hui Wang
    Yan-zhong Zhao
    Yi-ming Li
    Ke-chao Zhou
    Bai-yun Huang
    Journal of Central South University of Technology, 2005, 12 : 9 - 11