Recent progresses of 3D printing technologies for structural energy storage devices

被引:65
|
作者
Zeng, L. [1 ]
Li, P. [2 ]
Yao, Y. [3 ]
Niu, B. [1 ]
Niu, S. [1 ]
Xu, B. [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
关键词
Special application scenarios; Complex structure; Structural devices; Lithium-ion batteries; Development directions; LITHIUM-ION BATTERIES; NANOSTRUCTURED MATERIALS; ELECTRODE MATERIALS; HYBRID ELECTRODES; CARBON; SUPERCAPACITORS; CONVERSION; PERFORMANCE; INK; SPECTROMETRY;
D O I
10.1016/j.mtnano.2020.100094
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Although existing energy storage devices (ESDs) that are prepared by traditional technologies can meet the demands of many application scenarios in our life, there are still many special application scenarios that cannot be implemented, such as flexible devices, wearable devices, and structural devices. Three-dimensional (3D) printing, an advanced technology that can realize rapid production of structural objects, has been widely studied in tissue microfluidics, electronics, and engineering. The exploration of its application in ESDs has also been started by scientists in recent years. This article focuses on the topic of 3D-printed structural ESDs with improved electrochemical performances. First, the background of 3D printing technologies in fabricating ESDs is introduced, including the advantages and categories of 3D printing technologies for ESDs. Then, the current progresses of 3D printing technologies in fabricating structural lithium-ion batteries (LIBs) and sodium-ion batteries are summarized, including the preparation of inks, the 3D-printed cathode/anode, the 3D-printed electrolyte, and the 3D-printed full LIBs. Besides, the progresses of other structural ESDs that are based on 3D printing are briefly summarized, such as the 3D-printed super-capacitors, the 3D-printed lithium-sulfur (Li-S) batteries, and the 3D-printed lithium-oxygen (Li-O-2) batteries. In the end of the review, we also point out the future development directions of 3D printing technologies for structural ESDs. We believe that 3D printing technologies are a promising production method in preparing structural ESDs for special usage scenarios. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview
    Zeng, Li
    Ling, Shangwen
    Du, Dayue
    He, Hanna
    Li, Xiaolong
    Zhang, Chuhong
    ADVANCED SCIENCE, 2023, 10 (32)
  • [32] 3D Printed Graphene Based Energy Storage Devices
    Christopher W. Foster
    Michael P. Down
    Yan Zhang
    Xiaobo Ji
    Samuel J. Rowley-Neale
    Graham C. Smith
    Peter J. Kelly
    Craig E. Banks
    Scientific Reports, 7
  • [33] Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage
    Egorov, Vladimir
    Gulzar, Umair
    Zhang, Yan
    Breen, Siobhan
    O'Dwyer, Colm
    ADVANCED MATERIALS, 2020, 32 (29)
  • [34] A manufacturing process for an energy storage device using 3D printing
    Tanwilaisiri, Anan
    Zhang, Ruirong
    Xu, Yanmeng
    Harrison, David
    Fyson, John
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2016, : 888 - 891
  • [35] Energy storage crystalline gel materials for 3D printing application
    Mao, Yuchen
    Miyazaki, Takuya
    Gong, Jin
    Zhu, Meifang
    NANOSENSORS, BIOSENSORS, INFO-TECH SENSORS AND 3D SYSTEMS 2017, 2017, 10167
  • [36] Advances in 3D printing of structural and functional ceramics: Technologies, properties, and applications
    Wang, Yixuan
    Bu, Yanyan
    Wang, Xiangfu
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (14)
  • [37] Recent Patents on 3D Printing Technology in Artificial Bone Printing Devices, Materials, and Related Applications
    Li Z.
    Wang Q.
    Recent Patents on Engineering, 2023, 17 (05) : 24 - 35
  • [38] 3D photo-responsive optical devices manufactured by advanced printing technologies
    Szukalski, Adam
    Uttiya, Sureeporn
    D'Elia, Francesca
    Portone, Alberto
    Pisignano, Dario
    Persano, Luana
    Camposeo, Andrea
    ORGANIC PHOTONIC MATERIALS AND DEVICES XXI, 2019, 10915
  • [39] 4D Printing: A Review on Recent Progresses
    Chu, Honghui
    Yang, Wenguang
    Sun, Lujing
    Cai, Shuxiang
    Yang, Rendi
    Liang, Wenfeng
    Yu, Haibo
    Liu, Lianqing
    MICROMACHINES, 2020, 11 (09)
  • [40] ADDITIVE TECHNOLOGIES FOR 3D PRINTING WITH METALS
    Latypova, M. A.
    Turdaliev, A. T.
    USPEKHI FIZIKI METALLOV-PROGRESS IN PHYSICS OF METALS, 2024, 25 (02): : 386 - 415