Realistic Failures in Secure Multi-party Computation

被引:0
|
作者
Zikas, Vassilis [1 ]
Hauser, Sarah [1 ]
Maurer, Ueli [1 ]
机构
[1] ETH, Dept Comp Sci, CH-8092 Zurich, Switzerland
来源
THEORY OF CRYPTOGRAPHY, 6TH THEORY OF CRYPTOGRAPHY CONFERENCE, TCC 2009 | 2009年 / 5444卷
关键词
AGREEMENT; PRIVACY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In secure multi-party computation, the different ways in which the adversary can control the corrupted players are described by different corruption types. The three most common corruption types are active corruption (the adversary has full control over the corrupted player), passive corruption (the adversary sees what the corrupted player sees) and fail-corruption (the adversary can force the corrupted player to crash irrevocably). Because fail-corruption is inadequate for modeling recoverable failures, the so-called omission corruption was proposed and studied mainly in the context of Byzantine Agreement (BA). It allows the adversary to selectively block messages sent from and to the corrupted player, but without actually seeing the message. In this paper we propose a modular study of omission failures in MPC, by introducing the notions of send-omission (the adversary can selectively block outgoing messages) and receive-omission (the adversary can selectively block incoming messages) corruption. We provide security definitions for protocols tolerating a threshold adversary who can actively, receive-omission, and sendomission corrupt up to t(alpha), t(rho), and t(sigma) players, respectively. We show that the condition 3t(alpha) + t(rho) + t(sigma) < n is necessary and sufficient for perfectly secure MPC tolerating such an adversary. Along the way we provide perfectly secure protocols for BA under the same bound. As an implication of our results, we show that an adversary who actively corrupts up to t(alpha) players and omission corrupts (according to the already existing notion) up to t(omega) players can be tolerated for perfectly secure MPC if 3t(alpha) + 2t(omega) < n. This significantly improves a result by Koo in TCC 2006.
引用
收藏
页码:274 / 293
页数:20
相关论文
共 50 条
  • [21] MULTI-PARTY SECURE COMPUTATION OF MULTI-VARIABLE POLYNOMIALS
    Kosolapov, Yu. V.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2023, 16 (01): : 81 - 95
  • [22] Minimal Complete Primitives for Secure Multi-Party Computation
    Matthias Fitzi
    Juan A. Garay
    Ueli Maurer
    Rafail Ostrovsky
    Journal of Cryptology, 2005, 18 : 37 - 61
  • [23] Rational protocol of quantum secure multi-party computation
    Dou, Zhao
    Xu, Gang
    Chen, Xiu-Bo
    Niu, Xin-Xin
    Yang, Yi-Xian
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)
  • [24] Round-Optimal Secure Multi-party Computation
    Shai Halevi
    Carmit Hazay
    Antigoni Polychroniadou
    Muthuramakrishnan Venkitasubramaniam
    Journal of Cryptology, 2021, 34
  • [25] Secure multi-party computation protocol for sequencing problem
    ChunMing Tang
    GuiHua Shi
    ZhengAn Yao
    Science China Information Sciences, 2011, 54 : 1654 - 1662
  • [26] Rational protocol of quantum secure multi-party computation
    Zhao Dou
    Gang Xu
    Xiu-Bo Chen
    Xin-Xin Niu
    Yi-Xian Yang
    Quantum Information Processing, 2018, 17
  • [27] Application of Secure Multi-party Computation in Linear Programming
    Fu Zu-feng
    Wang Hai-ying
    Wu Yong-wu
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 244 - 248
  • [28] Secure Multi-party Quantum Computation with a Dishonest Majority
    Dulek, Yfke
    Grilo, Alex B.
    Jeffery, Stacey
    Majenz, Christian
    Schaffner, Christian
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 : 729 - 758
  • [29] Secure Multi-Party Computation for Machine Learning: A Survey
    Zhou, Ian
    Tofigh, Farzad
    Piccardi, Massimo
    Abolhasan, Mehran
    Franklin, Daniel
    Lipman, Justin
    IEEE ACCESS, 2024, 12 : 53881 - 53899
  • [30] Secure multi-party computation protocol for sorting problem
    School of Computer Science, Shaanxi Normal University, Xi'an 710062, China
    不详
    Hsi An Chiao Tung Ta Hsueh, 2008, 2 (231-233+255): : 231 - 233