ASYMPTOTIC SHAPE AND THE SPEED OF PROPAGATION OF CONTINUOUS-TIME CONTINUOUS-SPACE BIRTH PROCESSES

被引:7
|
作者
Bezborodov, Viktor [1 ]
Di Persio, Luca [1 ]
Krueger, Tyll [2 ,4 ]
Lebid, Mykola [3 ]
Ozanski, Tomasz [2 ,4 ]
机构
[1] Univ Verona, Dept Comp Sci, Str Grazie 15, I-37134 Verona, Italy
[2] Univ Wroclaw, Wroclaw, Poland
[3] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, D BSSE, Mattenstr 26, CH-4058 Basel, Switzerland
[4] Wroclaw Univ Technol, Dept Comp Sci & Engn, Janiszewskiego 15, PL-50372 Wroclaw, Poland
关键词
Shape theorem; spatial birth process; growth model; 1ST-PASSAGE PERCOLATION; GROWTH; MODEL; THEOREM;
D O I
10.1017/apr.2018.5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We formulate and prove a shape theorem for a continuous-time continuous-space stochastic growth model under certain general conditions. Similar to the classical lattice growth models, the proof makes use of the subadditive ergodic theorem. A precise expression for the speed of propagation is given in the case of a truncated free-branching birth rate.
引用
收藏
页码:74 / 101
页数:28
相关论文
共 50 条
  • [21] On continuous-time Markov processes in bargaining
    Houba, Harold
    ECONOMICS LETTERS, 2008, 100 (02) : 280 - 283
  • [22] Capacity of the continuous-space electromagnetic channel
    Jensen, Michael A.
    Wallace, Jon W.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (02) : 524 - 531
  • [23] Stochastic ordering for continuous-time processes
    Irle, A
    JOURNAL OF APPLIED PROBABILITY, 2003, 40 (02) : 361 - 375
  • [24] The predictability of continuous-time, bandlimited processes
    Lyman, RJ
    Edmonson, WW
    McCullough, S
    Rao, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (02) : 311 - 316
  • [25] Continuous-Time Functional Diffusion Processes
    Franzese, Giulio
    Corallo, Giulio
    Rossi, Simone
    Heinonen, Markus
    Filippone, Maurizio
    Michiardi, Pietro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] Continuous-time monitoring of queueing processes
    Kuang, Yanqing
    Xu, Ruiyu
    Wu, Jianguo
    Das, Devashish
    Sir, Mustafa
    Pasupathy, Kalyan
    FLEXIBLE SERVICES AND MANUFACTURING JOURNAL, 2025,
  • [27] A CLASS OF FRACTIONAL CONTINUOUS-TIME PROCESSES
    DENIAU, C
    VIANO, MC
    OPPENHEIM, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (04): : 451 - 454
  • [28] CONTINUOUS-TIME CONTROLLED BRANCHING PROCESSES
    del Puerto, Ines M.
    Yanev, George P.
    Molina, Manuel
    Yanev, Nikolay M.
    Gonzalez, Miguel
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (03): : 332 - 342
  • [29] An Introduction to Continuous-Time Stochastic Processes
    Pascu, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 597 - 598
  • [30] CONTINUOUS-TIME FRACTIONAL ARMA PROCESSES
    VIANO, MC
    DENIAU, C
    OPPENHEIM, G
    STATISTICS & PROBABILITY LETTERS, 1994, 21 (04) : 323 - 336