共 50 条
ASYMPTOTIC SHAPE AND THE SPEED OF PROPAGATION OF CONTINUOUS-TIME CONTINUOUS-SPACE BIRTH PROCESSES
被引:7
|作者:
Bezborodov, Viktor
[1
]
Di Persio, Luca
[1
]
Krueger, Tyll
[2
,4
]
Lebid, Mykola
[3
]
Ozanski, Tomasz
[2
,4
]
机构:
[1] Univ Verona, Dept Comp Sci, Str Grazie 15, I-37134 Verona, Italy
[2] Univ Wroclaw, Wroclaw, Poland
[3] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, D BSSE, Mattenstr 26, CH-4058 Basel, Switzerland
[4] Wroclaw Univ Technol, Dept Comp Sci & Engn, Janiszewskiego 15, PL-50372 Wroclaw, Poland
关键词:
Shape theorem;
spatial birth process;
growth model;
1ST-PASSAGE PERCOLATION;
GROWTH;
MODEL;
THEOREM;
D O I:
10.1017/apr.2018.5
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We formulate and prove a shape theorem for a continuous-time continuous-space stochastic growth model under certain general conditions. Similar to the classical lattice growth models, the proof makes use of the subadditive ergodic theorem. A precise expression for the speed of propagation is given in the case of a truncated free-branching birth rate.
引用
收藏
页码:74 / 101
页数:28
相关论文