Geometric orbital integrals and the center of the enveloping algebra
被引:1
|
作者:
Bismut, Jean-Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Inst Math Orsay, Batiment 307, F-91405 Orsay, FranceUniv Paris Saclay, Inst Math Orsay, Batiment 307, F-91405 Orsay, France
Bismut, Jean-Michel
[1
]
Shen, Shu
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, Case Courrier 247,4 Pl Jussieu, F-75252 Paris 05, FranceUniv Paris Saclay, Inst Math Orsay, Batiment 307, F-91405 Orsay, France
Shen, Shu
[2
]
机构:
[1] Univ Paris Saclay, Inst Math Orsay, Batiment 307, F-91405 Orsay, France
[2] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, Case Courrier 247,4 Pl Jussieu, F-75252 Paris 05, France
Selberg trace formula;
analysis on real and complex Lie groups;
FIXED-POINT FORMULA;
ELLIPTIC COMPLEXES;
CHARACTER FORMULA;
INDEX;
D O I:
10.1112/S0010437X22007412
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The purpose of this paper is to extend the explicit geometric evaluation of semisimple orbital integrals for smooth kernels for the Casimir operator obtained by the first author to the case of kernels for arbitrary elements in the center of the enveloping algebra.