Fractal particle trajectories in capillary waves: Imprint of wavelength

被引:23
|
作者
Hansen, AE
Schroder, E
Alstrom, P
Andersen, JS
Levinsen, MT
机构
[1] Center for Chaos and Turbulence Studies, Niels Bohr Institute, Copenhagen ø, DK-2100
关键词
D O I
10.1103/PhysRevLett.79.1845
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine particle trajectories in capillary waves formed on a water surface subject to vertical vibrations. We focus on the role of a distinct length scale present in our experiment, namely, the wavelength lambda of the surface waves. We observe non-Brownian particle trajectories with a fractal dimension D different from the random walk value D = 2. A crossover is observed from one anomalous behavior at length scales below lambda, to another at larger length scales. Data collapse is shown to be feasible, and scaling functions characterizing the crossover are identified. Our results are compared to those obtained from observations of drifters in the upper ocean. The distinct length scale lambda allows us to divide the particle trajectories into flights and traps. The distribution of flight times shows a power-law behavior with an exponent between 2.3 and 3.
引用
收藏
页码:1845 / 1848
页数:4
相关论文
共 50 条
  • [21] FRACTAL ANALYSIS OF PARTICLE TRAJECTORIES IN 3-PHASE SYSTEMS
    LUEWISUTHICHAT, W
    TSUTSUMI, A
    YOSHIDA, K
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 1995, 73 (A3): : 222 - 227
  • [22] SCALING BEHAVIOR OF ATOMIC MOTIONS - FRACTAL ANALYSIS OF PARTICLE TRAJECTORIES
    BROOKS, CL
    PHYSICAL REVIEW A, 1987, 35 (12): : 5178 - 5182
  • [23] Particle trajectories of nonlinear gravity waves in deep water
    Chang, Hsien-Kuo
    Chen, Yang-Yi
    Liou, Jin-Cheng
    OCEAN ENGINEERING, 2009, 36 (05) : 324 - 329
  • [24] RECENT PROGRESS ON PARTICLE TRAJECTORIES IN STEADY WATER WAVES
    Ehrnstroem, Mats
    Villari, Gabriele
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (03): : 539 - 559
  • [25] Particle trajectories in linear deep-water waves
    Constantin, Adrian
    Ehrnstrom, Mats
    Villari, Gabriele
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (04) : 1336 - 1344
  • [26] ON PARTICLE TRAJECTORIES IN LINEAR DEEP-WATER WAVES
    Matioc, Anca Voichita
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (04) : 1537 - 1547
  • [27] A BOUNDARY INTEGRAL FORMULATION FOR PARTICLE TRAJECTORIES IN STOKES WAVES
    Nachbin, Andre
    Ribeiro-Junior, Roberto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (08) : 3135 - 3153
  • [28] PARTICLE TRAJECTORIES WITH FRACTAL DIMENSIONS DF GREATER-THAN 2
    MAUSBACH, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (05): : T465 - T467
  • [29] PARTICLE TRAJECTORIES IN EXTREME STOKES WAVES OVER INFINITE DEPTH
    Lyons, Tony
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (08) : 3095 - 3107
  • [30] The rigorous approximation of long-wavelength capillary-gravity waves
    Schneider, G
    Wayne, CE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 162 (03) : 247 - 285