Multibyte Electromagnetic Analysis Based on Particle Swarm Optimization Algorithm

被引:4
|
作者
Sun, Shaofei [1 ]
Zhang, Hongxin [1 ]
Cui, Xiaotong [1 ]
Dong, Liang [1 ,2 ]
Khan, Muhammad Saad [3 ]
Fang, Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Qiqihar Univ, Commun & Elect Engn Inst, Qiqihar 161006, Peoples R China
[3] Bahauddin Zakariya Univ, Dept Elect Engn, Multan 60000, Pakistan
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 02期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
information security; correlation electromagnetic analysis; particle swarm algorithm; cryptographic algorithm;
D O I
10.3390/app11020839
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm's key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Particle Swarm Optimization Algorithm
    Zhou, Feihong
    Liao, Zizhen
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1369 - +
  • [32] Optimization of the Particle Swarm Algorithm
    Chytil, J.
    PIERS 2014 GUANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2014, : 2355 - 2359
  • [33] An improved two-swarm based particle swarm optimization algorithm
    Li, Ting
    Lai, Xuzhi
    Wu, Min
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3129 - +
  • [34] Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm
    Mingwei Li
    Haigui Kang
    Pengfei Zhou
    Weichiang Hong
    Journal of Systems Engineering and Electronics, 2013, 24 (02) : 324 - 334
  • [35] Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm
    Li, Mingwei
    Kang, Haigui
    Zhou, Pengfei
    Hong, Weichiang
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2013, 24 (02) : 324 - 334
  • [36] A Hybrid Algorithm Based on Particle Swarm Optimization and Ant Colony Optimization Algorithm
    Lu, Junliang
    Hu, Wei
    Wang, Yonghao
    Li, Lin
    Ke, Peng
    Zhang, Kai
    SMART COMPUTING AND COMMUNICATION, SMARTCOM 2016, 2017, 10135 : 22 - 31
  • [37] An application of particle swarm optimization algorithm to clustering analysis
    Kuo, R. J.
    Wang, M. J.
    Huang, T. W.
    SOFT COMPUTING, 2011, 15 (03) : 533 - 542
  • [38] A hybrid particle swarm optimization algorithm for clustering analysis
    Marinakis, Yannis
    Marinaki, Magdalene
    Matsatsinis, Nikolaos
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2007, 4654 : 241 - +
  • [39] An application of particle swarm optimization algorithm to clustering analysis
    R. J. Kuo
    M. J. Wang
    T. W. Huang
    Soft Computing, 2011, 15 : 533 - 542
  • [40] Particle Swarm Optimization and Firefly Algorithm: Performance Analysis
    Bhushan, Bharat
    Pillai, Sarath S.
    PROCEEDINGS OF THE 2013 3RD IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2013, : 746 - 751