Determinantal polynomials of a weighted shift operator

被引:2
|
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi [2 ]
Undrakh, Batzorig [3 ]
Vandanjav, Adiyasuren [4 ]
机构
[1] Soochow Univ, Dept Math, Taipei, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori, Japan
[3] Natl Univ Mongolia, Inst Math, Ulaanbaatar, Mongolia
[4] Natl Univ Mongolia, Dept Math, Ulaanbaatar, Mongolia
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 01期
关键词
weighted shift operator; q-analog; numerical radius; point spectrum; 47A12; 47B37; NUMERICAL RANGE;
D O I
10.1080/03081087.2014.1003528
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A q-analog expression of the determinantal polynomial of a weighted shift operator is introduced and applied to find the numerical radius of the operator.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [11] Hyperbolic forms admit reversible weighted shift determinantal representation
    Chien, M. T.
    Nakazato, H.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [12] THE NUMERICAL RADIUS OF A WEIGHTED SHIFT OPERATOR
    Undrakh, Batzorig
    Nakazato, Hiroshi
    Vandanjav, Adiyasuren
    Chien, Mao-Ting
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 944 - 963
  • [13] On the decomposition of a perturbed operator of weighted shift
    Baskakov A.G.
    Ukrainian Mathematical Journal, 1998, 50 (2) : 177 - 185
  • [14] ON BASIC SEQUENCES AND THE WEIGHTED SHIFT OPERATOR
    THEENATHAYALAN, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1987, 18 (08): : 723 - 731
  • [15] OPERATOR OF GENERALIZED SHIFT IN ORTHOGONAL MATRIX POLYNOMIALS
    OSILENKER, BP
    DOKLADY AKADEMII NAUK SSSR, 1991, 318 (02): : 282 - 284
  • [16] Chaotic backward shift operator on Chebyshev polynomials
    Kiss, Marton
    Kalmar-Nagy, Tamas
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (05) : 1025 - 1037
  • [17] Spectral Analysis of a Weighted Shift Operator with Unbounded Operator Coefficients
    A. G. Baskakov
    A. I. Pastukhov
    Siberian Mathematical Journal, 2001, 42 : 1026 - 1035
  • [18] Spectral analysis of a weighted shift operator with unbounded operator coefficients
    Baskakov, AG
    Pastukhov, AI
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (06) : 1026 - 1035
  • [19] On algebraic properties of fuzzy weighted shift operator
    Shukur, Ali A.
    Kareem, Noor Riyadh
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (06): : 1583 - 1588
  • [20] An operator inequality for weighted Bergman shift operators
    Olofsson, Anders
    Wennman, Aron
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) : 789 - 808