Determinantal polynomials of a weighted shift operator

被引:2
|
作者
Chien, Mao-Ting [1 ]
Nakazato, Hiroshi [2 ]
Undrakh, Batzorig [3 ]
Vandanjav, Adiyasuren [4 ]
机构
[1] Soochow Univ, Dept Math, Taipei, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori, Japan
[3] Natl Univ Mongolia, Inst Math, Ulaanbaatar, Mongolia
[4] Natl Univ Mongolia, Dept Math, Ulaanbaatar, Mongolia
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 01期
关键词
weighted shift operator; q-analog; numerical radius; point spectrum; 47A12; 47B37; NUMERICAL RANGE;
D O I
10.1080/03081087.2014.1003528
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A q-analog expression of the determinantal polynomial of a weighted shift operator is introduced and applied to find the numerical radius of the operator.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 50 条
  • [1] Determinantal polynomials of weighted shift matrices with palindromic harmonic weights
    Chakraborty, Bikshan
    Ojha, Sarita
    Birbonshi, Riddhick
    ADVANCES IN OPERATOR THEORY, 2023, 8 (03)
  • [2] Determinantal polynomials of some weighted shift matrices with palindromic weights
    Chakraborty, Bikshan
    Ojha, Sarita
    Birbonshi, Riddhick
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (03)
  • [3] DETERMINANTAL POLYNOMIALS OF A WEIGHTED SHIFT MATRIX WITH PALINDROMIC GEOMETRIC WEIGHTS
    Batzorig, Undrakh
    OPERATORS AND MATRICES, 2022, 16 (02): : 309 - 322
  • [4] NUMERICAL RADII OF WEIGHTED SHIFT OPERATORS USING DETERMINANTAL POLYNOMIALS
    Chakraborty, Bikshan
    Ojha, Sarita
    Birbonshi, Riddhick
    OPERATORS AND MATRICES, 2022, 16 (04): : 1155 - 1174
  • [5] Determinantal polynomials of some weighted shift matrices with palindromic weights
    Bikshan Chakraborty
    Sarita Ojha
    Riddhick Birbonshi
    Annals of Functional Analysis, 2023, 14
  • [6] Determinantal polynomials of weighted shift matrices with palindromic harmonic weights
    Bikshan Chakraborty
    Sarita Ojha
    Riddhick Birbonshi
    Advances in Operator Theory, 2023, 8
  • [7] About Operator Weighted Shift
    Chun Lan Jiang
    Yong Fei Jin
    Zong Yao Wang
    Acta Mathematica Sinica, English Series, 2007, 23 : 1385 - 1390
  • [8] About Operator Weighted Shift
    Chun Lan JIANG Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (08) : 1385 - 1390
  • [9] About operator weighted shift
    Jiang, Chun Lan
    Jin, Yong Fei
    Wang, Zong Yao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (08) : 1385 - 1390
  • [10] Determinantal representations of hyperbolic forms via weighted shift matrices
    Chien, M. T.
    Nakazato, H.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 172 - 181