DIRICHLET PROCESS MIXTURE MODELS FOR LEXICAL CATEGORY ACQUISITION

被引:0
|
作者
Zhang, Bichuan [1 ]
Wang, Xiaojie [1 ]
Fang, Guannan [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Ctr Intelligence Sci & Technol, Beijing, Peoples R China
关键词
lexical category acquisition; DPMM; evaluation metric; CHILDES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we apply Dirichlet Process Mixture Models (DPMMs) to a cognitive computational task in natural language processing (NLP): lexical category acquisition. The model takes a corpus of child-directed speech from CHILDES as input. We assess the performance using a new measure we proposed that meets three criteria: informativeness, diversity and purity. The quantitative and qualitative evaluation performed highlights the choice of the feature dimension and inherent parameters can influence the performance of DPMMs towards lexical category solutions.
引用
收藏
页码:123 / 127
页数:5
相关论文
共 50 条
  • [41] Enhancing Cluster Accuracy in Diabetes Multimorbidity With Dirichlet Process Mixture Models
    Kita, Francis John
    Gaddes, Srinivasa Rao
    Kirigiti, Peter Josephat
    IEEE ACCESS, 2025, 13 : 6422 - 6439
  • [42] Probabilistic weighted Dirichlet process mixture with an application to stochastic volatility models
    Sun, Peng
    Kim, Inyoung
    Lee, Ki-Ahm
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024,
  • [43] A DIRICHLET PROCESS MIXTURE OF HIDDEN MARKOV MODELS FOR PROTEIN STRUCTURE PREDICTION
    Lennox, Kristin P.
    Dahl, David B.
    Vannucci, Marina
    Day, Ryan
    Tsai, Jerry W.
    ANNALS OF APPLIED STATISTICS, 2010, 4 (02): : 916 - 942
  • [44] FETAL HEART RATE ANALYSIS BY HIERARCHICAL DIRICHLET PROCESS MIXTURE MODELS
    Yu, Kezi
    Quirk, J. Gerald
    Djuric, Petar M.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 709 - 713
  • [45] Dirichlet process mixture models for non-stationary data streams
    Casado, Ioar
    Perez, Aritz
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 873 - 878
  • [46] DIRICHLET PROCESS MIXTURE MODELS FOR CLUSTERING I-VECTOR DATA
    Seshadri, Shreyas
    Remes, Ulpu
    Rasanen, Okko
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 5470 - 5474
  • [47] MCMC Sampling Estimation of Poisson-Dirichlet Process Mixture Models
    Qiu, Xiang
    Yuan, Linlin
    Zhou, Xueqin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [48] Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models
    Shi, Yushu
    Martens, Michael
    Banerjee, Anjishnu
    Laud, Purushottam
    BAYESIAN ANALYSIS, 2019, 14 (03): : 677 - 702
  • [49] Quantum annealing for Dirichlet process mixture models with applications to network clustering
    Sato, Issei
    Tanaka, Shu
    Kurihara, Kenichi
    Miyashita, Seiji
    Nakagawa, Hiroshi
    Neurocomputing, 2013, 121 : 523 - 531
  • [50] Distributed MCMC Inference in Dirichlet Process Mixture Models Using Julia
    Dinari, Or
    Yu, Angel
    Freifeld, Oren
    Fisher, John W., III
    2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 518 - 525