Geometric and dielectric characterization of buried cylinders by using simple time-domain electromagnetic data and neural networks

被引:0
|
作者
Bermani, E [1 ]
Caorsi, S
Raffetto, M
机构
[1] Univ Pavia, Dept Elect, I-27100 Pavia, Italy
[2] Univ Genoa, Dept Biophys & Elect Engn, I-16145 Genoa, Italy
关键词
buried objects; time-domain electromagnetics; electromagnetic inverse scattering; neural networks;
D O I
10.1002/(SICI)1098-2760(20000105)24:1<24::AID-MOP9>3.3.CO;2-L
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of the performances of the neural network approach for the geometric and dielectric characterization of buried cylinders is carried out. The neural-network-process data are obtained from the time-domain formulation of the electromagnetic scattering problem. This analysis is based on the rise of simplified models which allow the analytical calculations of the solutions. The question of what data need to be extracted from the transient scattered field in order to make the characterization process work correctly is addressed, and the results obtained are shown. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条
  • [21] An efficient time-domain electromagnetic solution using the time-domain variable resolution concept
    Kim, Hyung-Hoon
    Ju, Saehoon
    Choi, Seungwon
    Park, Jong-Il
    Kim, Hyeongdong
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2006, E89B (12) : 3487 - 3490
  • [22] Electromagnetic scattering from homogeneous dielectric bodies using time-domain integral equations
    Pisharody, G
    Weile, DS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (02) : 687 - 697
  • [23] Time-domain denoising of time-frequency electromagnetic data
    Zhang, Bi-Ming
    Dai, Shi-Kun
    Jiang, Qi-Yun
    Yan, Jian
    Li, Guang
    APPLIED GEOPHYSICS, 2019, 16 (03) : 378 - 393
  • [24] Three-dimensional reconstruction of a shallowly buried mine using time-domain data
    Zhou, H
    Takenaka, T
    Tanaka, T
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 39 (04) : 276 - 280
  • [25] Detection and Location of Defects in Wiring Networks Using Time-Domain Reflectometry and Neural Networks
    Smail, M. K.
    Hacib, T.
    Pichon, L.
    Loete, F.
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (05) : 1502 - 1505
  • [26] Vehicle classification in sensor networks using time-domain signal processing and neural networks
    Mazarakis, Georgios P.
    Avaritsiotis, John N.
    MICROPROCESSORS AND MICROSYSTEMS, 2007, 31 (06) : 381 - 392
  • [27] A new technique inversion Time-Domain electromagnetic data
    Widodo
    HELIYON, 2023, 9 (11)
  • [28] A SIMPLE SENSITIVITY ANALYSIS OF TIME-DOMAIN AND FREQUENCY-DOMAIN ELECTROMAGNETIC MEASUREMENTS
    GOMEZTREVINO, E
    GEOPHYSICS, 1987, 52 (10) : 1418 - 1423
  • [29] Time-domain electromagnetic diffusion and imaging depth for airborne electromagnetic data
    Yin Chang-Chun
    Qiu Chang-Kai
    Liu Yun-He
    Cai Jing
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2016, 59 (08): : 3079 - 3086
  • [30] Bayesian subsampling of time-domain electromagnetic data using kernel density product
    Li, Hai
    Xue, Guoqiang
    Chen, Wen
    GEOPHYSICS, 2022, 87 (02) : E79 - E90