Geometric and dielectric characterization of buried cylinders by using simple time-domain electromagnetic data and neural networks

被引:0
|
作者
Bermani, E [1 ]
Caorsi, S
Raffetto, M
机构
[1] Univ Pavia, Dept Elect, I-27100 Pavia, Italy
[2] Univ Genoa, Dept Biophys & Elect Engn, I-16145 Genoa, Italy
关键词
buried objects; time-domain electromagnetics; electromagnetic inverse scattering; neural networks;
D O I
10.1002/(SICI)1098-2760(20000105)24:1<24::AID-MOP9>3.3.CO;2-L
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of the performances of the neural network approach for the geometric and dielectric characterization of buried cylinders is carried out. The neural-network-process data are obtained from the time-domain formulation of the electromagnetic scattering problem. This analysis is based on the rise of simplified models which allow the analytical calculations of the solutions. The question of what data need to be extracted from the transient scattered field in order to make the characterization process work correctly is addressed, and the results obtained are shown. (C) 2000 John Wiley & Sons, Inc.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条
  • [1] SIMPLE INVERSION OF TIME-DOMAIN ELECTROMAGNETIC DATA
    BARNETT, CT
    GEOPHYSICS, 1984, 49 (07) : 925 - 933
  • [2] Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data
    Asif, Muhammad Rizwan
    Foged, Nikolaj
    Maurya, Pradip Kumar
    Grombacher, Denys James
    Christiansen, Anders Vest
    Auken, Esben
    Larsen, Jakob Juul
    GEOPHYSICS, 2022, 87 (04) : E177 - E187
  • [3] Time Domain Inverse Scattering of Buried Inhomogeneous Dielectric Cylinders
    Chiu, Chien-Ching
    Chen, Shao-Jen
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2012, 31 (02) : 128 - 139
  • [4] Time Domain Inverse Scattering of Buried Inhomogeneous Dielectric Cylinders
    Chien-Ching Chiu
    Shao-Jen Chen
    Journal of Nondestructive Evaluation, 2012, 31 : 128 - 139
  • [5] SIMPLE TECHNIQUE IN DIELECTRIC TIME-DOMAIN SPECTROSCOPY
    WALDMEYER, J
    ZSCHOKKEGRANACHER, I
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1975, 8 (13) : 1513 - 1519
  • [6] Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks
    Puzyrev, Vladimir
    Swidinsky, Andrei
    COMPUTERS & GEOSCIENCES, 2021, 149
  • [7] An electromagnetic approach based on neural networks for the GPR investigation of buried cylinders
    Caorsi, S
    Cevini, G
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (01) : 3 - 7
  • [8] Noncubic cell time-domain analysis of scattering by dielectric cylinders
    Harada, N
    Hano, M
    IEICE TRANSACTIONS ON ELECTRONICS, 1998, E81C (12) : 1779 - 1783
  • [9] Time-Domain Electromagnetic Scattering by Buried Dielectric Objects with the Cylindrical-Wave Approach for GPR Modelling
    Ponti, Cristina
    Santarsiero, Massimo
    Schettini, Giuseppe
    ELECTRONICS, 2020, 9 (03)
  • [10] Using neural networks for calibration of time-domain reflectometry measurements
    Persson, M
    Berndtsson, R
    Sivakumar, B
    HYDROLOGICAL SCIENCES JOURNAL, 2001, 46 (03) : 389 - 398