Blind blur estimation using low rank approximation of cepstrum

被引:0
|
作者
Bhutta, Adeel A. [1 ]
Foroosh, Hassan [1 ]
机构
[1] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA
来源
IMAGE ANALYSIS AND RECOGNITION, PT 1 | 2006年 / 4141卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quality of image restoration from degraded images is highly dependent upon a reliable estimate of blur. This paper proposes a blind blur estimation technique based on the low rank approximation of cepstrum. The key idea that this paper presents is that the blur functions usually have low ranks when compared with ranks of real images and can be estimated from cepstrum of degraded images. We extend this idea and propose a general framework for estimation of any type of blur. We show that the proposed technique can correctly estimate commonly used blur types both in noiseless and noisy cases. Experimental results for a wide variety of conditions i.e., when images have low resolution, large blur support, and low signal-to-noise ratio, have been presented to validate our proposed method.
引用
收藏
页码:94 / 103
页数:10
相关论文
共 50 条
  • [21] Multi-Scale Multi-Lag Channel Estimation Using Low Rank Approximation for OFDM
    Beygi, Sajjad
    Mitra, Urbashi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) : 4744 - 4755
  • [22] Blind Image Blur Estimation via Deep Learning
    Yan, Ruomei
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (04) : 1910 - 1921
  • [23] Blind estimation of motion blur parameters for image deconvolution
    Oliveira, Joao P.
    Figueiredo, Mario A. T.
    Bioucas-Dias, Jose M.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2007, 4478 : 604 - +
  • [24] Structured low rank approximation
    Chu, MT
    Funderlic, RE
    Plemmons, RJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 366 : 157 - 172
  • [25] Convex Low Rank Approximation
    Larsson, Viktor
    Olsson, Carl
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 120 (02) : 194 - 214
  • [26] Convex Low Rank Approximation
    Viktor Larsson
    Carl Olsson
    International Journal of Computer Vision, 2016, 120 : 194 - 214
  • [27] Blind Estimation of Motion Blur Kernel Parameters Using Cepstral Domain and Hough Transform
    Shah, Mayana J.
    Dalal, Upena D.
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 992 - 997
  • [28] Hough Transform and Cepstrum Based Estimation of Spatial-invariant and Variant Motion Blur Parameters
    Shah, Mayana J.
    Dalal, Upena D.
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRONICS, COMPUTERS AND COMMUNICATIONS (ICAECC), 2014,
  • [29] Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation
    Ren, Wenqi
    Zhang, Jiawei
    Ma, Lin
    Pan, Jinshan
    Cao, Xiaochun
    Zuo, Wangmeng
    Liu, Wei
    Yang, Ming-Hsuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [30] Efficient Pull-Rank Spatial Covariance Estimation Using Independent Low-Rank Matrix Analysis for Blind Source Separation
    Kubo, Yuki
    Takamune, Norihiro
    Kitantura, Daichi
    Saruwatari, Hiroshi
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,