Blind blur estimation using low rank approximation of cepstrum

被引:0
|
作者
Bhutta, Adeel A. [1 ]
Foroosh, Hassan [1 ]
机构
[1] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quality of image restoration from degraded images is highly dependent upon a reliable estimate of blur. This paper proposes a blind blur estimation technique based on the low rank approximation of cepstrum. The key idea that this paper presents is that the blur functions usually have low ranks when compared with ranks of real images and can be estimated from cepstrum of degraded images. We extend this idea and propose a general framework for estimation of any type of blur. We show that the proposed technique can correctly estimate commonly used blur types both in noiseless and noisy cases. Experimental results for a wide variety of conditions i.e., when images have low resolution, large blur support, and low signal-to-noise ratio, have been presented to validate our proposed method.
引用
收藏
页码:94 / 103
页数:10
相关论文
共 50 条
  • [1] Blind image blur identification in cepstrum domain
    Wu, Shiqian
    Lu, Zhongkang
    Ong, Ee Ping
    Lin, Weisi
    PROCEEDINGS - 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, VOLS 1-3, 2007, : 1166 - +
  • [2] Blur kernel estimation via salient edges and low rank prior for blind image deblurring
    Dong, Jiangxin
    Pan, Jinshan
    Su, Zhixun
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 58 : 134 - 145
  • [3] Rapid Rank Estimation and Low-Rank Approximation of Impedance Matrix Blocks Using Proxy Grids
    Brick, Yaniv
    Yilmaz, Ali E.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (10) : 5359 - 5369
  • [4] MOTION BLUR KERNEL ESTIMATION VIA SALIENT EDGES AND LOW RANK PRIOR
    Pan, Jinshan
    Liu, Risheng
    Su, Zhixun
    Liu, Guili
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [5] Weighted Low Rank Approximation for Background Estimation Problems
    Dutta, Aritra
    Li, Xin
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1853 - 1861
  • [6] Blind estimation of blur in hyperspectral images
    Zhang, Mo
    Vozel, Benoit
    Chehdi, Kacem
    Uss, Mykhail
    Abramov, Sergey
    Lukin, Vladimir
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIII, 2017, 10427
  • [7] Parameter recognition for defocus blur image using cepstrum analysis
    周曲
    High Technology Letters, 2008, 14 (03) : 276 - 281
  • [8] Blind deconvolution using a variational approach to parameter, image, and blur estimation
    Molina, Rafael
    Mateos, Javier
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) : 3715 - 3727
  • [9] Blind Motion-Blur Parameter Estimation Using Edge Detectors
    Grou-Szabo, Robert
    Shibata, Tadashi
    2009 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2009, : 43 - +
  • [10] A new estimation of blur in the blind restoration problem
    Gerace, I
    Pandolfi, R
    Pucci, P
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 261 - 264