Brain Tumor Segmentation Using Concurrent Fully Convolutional Networks and Conditional Random Fields

被引:9
|
作者
Shen, Guangyu [1 ]
Ding, Yi [1 ]
Lan, Tian [1 ]
Chen, Hao [1 ]
Qin, Zhiguang [1 ]
机构
[1] Univ Elect Sci & Technol, Sch Software & Engn, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
component; Deep Learning; concurrent fully convolutional networks; conditional random fields; multimodal MRI; brain tumor segmentation; MEDICAL IMAGE SEGMENTATION;
D O I
10.1145/3195588.3195590
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a concurrent Fully Convolutional Networks(CFCN) structure which contains three Fully Convolutional Networks(FCN). Gaussian filter, Mean filter and Median filter are chosen to pre-process the original multimodal MR images. Then, we fuse the results from three networks. Finally, a Fully Connected Conditional Random Field (Fully Connected CRF) is used to accomplish the post-processing, improving the model's ability of detecting minute structures. Our model was trained and evaluated on BRATS 2015 challenge dataset. The results show that our model provides promising segmentations.
引用
收藏
页码:24 / 30
页数:7
相关论文
共 50 条
  • [31] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Pereira, Sergio
    Pinto, Adriano
    Alves, Victor
    Silva, Carlos A.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1240 - 1251
  • [32] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    M. Mohammed Thaha
    K. Pradeep Mohan Kumar
    B. S. Murugan
    S. Dhanasekeran
    P. Vijayakarthick
    A. Senthil Selvi
    [J]. Journal of Medical Systems, 2019, 43
  • [33] Segmentation and labeling of documents using Conditional Random Fields
    Shetty, Shravya
    Srinivasan, Harish
    Beal, Matthew
    Srihari, Sargur
    [J]. DOCUMENT RECOGNITION AND RETRIEVAL XIV, 2007, 6500
  • [34] RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields
    Chen, Gaoxiang
    Li, Qun
    Shi, Fuqian
    Rekik, Islem
    Pan, Zhifang
    [J]. NEUROIMAGE, 2020, 211
  • [35] INFINET: FULLY CONVOLUTIONAL NETWORKS FOR INFANT BRAIN MRI SEGMENTATION
    Kumar, Shubham
    Conjeti, Sailesh
    Roy, Abhijit Guha
    Wachinger, Christian
    Navab, Nassir
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 145 - 148
  • [36] SEGMENTATION LABEL PROPAGATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS AND DENSE CONDITIONAL RANDOM FIELD
    Gao, Mingchen
    Xu, Ziyue
    Lu, Le
    Wu, Aaron
    Nogues, Isabella
    Summers, Ronald M.
    Mollura, Daniel J.
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1265 - 1268
  • [37] Effective Semantic Pixel labelling with Convolutional Networks and Conditional Random Fields
    Paisitkriangkrai, Sakrapee
    Sherrah, Jamie
    Janney, Pranam
    Hengel, Anton Van-Den
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,
  • [38] Fully automatic person segmentation in unconstrained video using spatio-temporal conditional random fields
    Bhole, Chetan
    Pal, Christopher
    [J]. IMAGE AND VISION COMPUTING, 2016, 51 : 58 - 68
  • [39] Loss Weightings for Improving Imbalanced Brain Structure Segmentation Using Fully Convolutional Networks
    Sugino, Takaaki
    Kawase, Toshihiro
    Onogi, Shinya
    Kin, Taichi
    Saito, Nobuhito
    Nakajima, Yoshikazu
    [J]. HEALTHCARE, 2021, 9 (08)
  • [40] Accurate Estimation of Left Ventricle Ejection Fraction Using Fully Convolutional Networks and Fully Connected Conditional Random Field
    Liu, Xiaoming
    Lei, Zhen
    He, Kan
    Zhang, Huimao
    Guo, Shuxu
    Zhang, Xindong
    Li, Xueyan
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (03): : 431 - 438