Bi-Integrable Couplings of a New Soliton Hierarchy Associated with SO(4)

被引:2
|
作者
Cao, Yan [1 ,2 ]
Chen, Liangyun [1 ]
He, Baiying [1 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Harbin Univ Sci & Technol, Rongcheng 264300, Peoples R China
关键词
LIE-ALGEBRAS; HAMILTONIAN-STRUCTURE; YANG HIERARCHY; EQUATIONS;
D O I
10.1155/2015/857684
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the six-dimensional real special orthogonal Lie algebra SO(4), a new Lax integrable hierarchy is obtained by constructing an isospectral problem. Furthermore, we construct bi-integrable couplings for this hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Hamiltonian structures of the obtained bi-integrable couplings are constructed by the variational identity.
引用
收藏
页数:11
相关论文
共 50 条