Bi-Integrable Couplings of a New Soliton Hierarchy Associated with SO(4)

被引:2
|
作者
Cao, Yan [1 ,2 ]
Chen, Liangyun [1 ]
He, Baiying [1 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Harbin Univ Sci & Technol, Rongcheng 264300, Peoples R China
关键词
LIE-ALGEBRAS; HAMILTONIAN-STRUCTURE; YANG HIERARCHY; EQUATIONS;
D O I
10.1155/2015/857684
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the six-dimensional real special orthogonal Lie algebra SO(4), a new Lax integrable hierarchy is obtained by constructing an isospectral problem. Furthermore, we construct bi-integrable couplings for this hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Hamiltonian structures of the obtained bi-integrable couplings are constructed by the variational identity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with SO(4)
    Zhang, Jian
    Zhang, Chiping
    Cui, Yunan
    OPEN MATHEMATICS, 2017, 15 : 203 - 217
  • [2] Bi-Integrable and Tri-Integrable Couplings of a Soliton Hierarchy Associated with SO(3)
    Zhang, Jian
    Zhang, Chiping
    Cui, Yunan
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [3] An so (3, ℝ) Counterpart of the Dirac Soliton Hierarchy and its Bi-Integrable Couplings
    Wen-Ying Zhang
    Wen-Xiu Ma
    International Journal of Theoretical Physics, 2014, 53 : 4211 - 4222
  • [4] An so (3, R) Counterpart of the Dirac Soliton Hierarchy and its Bi-Integrable Couplings
    Zhang, Wen-Ying
    Ma, Wen-Xiu
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (12) : 4211 - 4222
  • [5] Bi-integrable couplings of a new soliton hierarchy associated with a non-semisimple Lie algebra
    Manukure, Solomon
    Ma, Wen-Xiu
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 44 - 52
  • [6] Integrable couplings, bi-integrable couplings and their Hamiltonian structures of the Giachetti-Johnson soliton hierarchy
    Tang, Ya-Ning
    Wang, Lei
    Ma, Wen-Xiu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) : 2305 - 2315
  • [7] Bi-Integrable Couplings Associated with so(3,R)
    McAnally, Morgan
    Ma, Wen-Xiu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 1921 - 1935
  • [8] Nonlinear bi-integrable couplings of a generalized Kaup-Newell type soliton hierarchy
    Guan, Xue
    Zhang, Huiqun
    Liu, Wenjun
    OPTIK, 2018, 172 : 1003 - 1011
  • [9] Bi-integrable couplings of a Kaup-Newell type soliton hierarchy and their bi-Hamiltonian structures
    Yu, Shuimeng
    Yao, Yuqin
    Shen, Shoufeng
    Ma, Wen-Xiu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) : 366 - 377
  • [10] BI-INTEGRABLE COUPLINGS OF A NONSEMISIMPLE LIE ALGEBRA BY TODA LATTICE HIERARCHY
    Li, Xin-Yue
    Zhao, Qiu-Lan
    Li, Yu-Xia
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (03) : 333 - 348