Giant Faraday Rotation in Graphene Metamolecules due to Plasmonic Coupling

被引:20
|
作者
Liu, Jian Qiang [1 ,2 ]
Wu, Shan [3 ]
Zhou, Yu Xiu [1 ,2 ]
He, Meng Dong [4 ]
Zayats, Anatoly, V [5 ]
机构
[1] Jiujiang Univ, Sch Sci, Jiujiang 332005, Peoples R China
[2] Jiujiang Univ, Key Lab Jiangxi Microstruct Funct Mat, Jiujiang 332005, Peoples R China
[3] Fuyang Normal Univ, Lab Funct Mat & Devices Informat, Fuyang 236032, Peoples R China
[4] Cent South Univ Forestry & Technol, Sch Sci, Changsha 410004, Hunan, Peoples R China
[5] Kings Coll London, Dept Phys, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Metamaterials; nanophotonics; optical devices; optical polarization; DEVICES;
D O I
10.1109/JLT.2018.2818712
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We designed and numerically investigated a mechanism to enhance the polarization rotation when THz radiation passes through an array of multilayered graphene/insulator disks placed in a static magnetic field. The observed giant Faraday rotation is due to plasmonic coupling in the disks leading to the enhanced dipole oscillation strength of plasmonic antibonding states. With additional electromagnetic coupling between the disks in the array, the Faraday rotation angles nearly 30 degrees are achieved in a relatively small external magnetic field of around 1 T. The operation wavelength can be tuned within the THz spectral range by controlling the Fermi level of graphene, number of graphene layers, and disk size and period. The proposed mechanism opens up a way to design the ultrathin magneto-optical nanophotonic devices and polarization rotators with high transmittance in the mid-infrared range.
引用
收藏
页码:2606 / 2610
页数:5
相关论文
共 50 条
  • [31] Giant Faraday Rotation in Mesogenic Organic Molecules
    Vandendriessche, Stefaan
    Van Cleuvenbergen, Stijn
    Willot, Pieter
    Hennrich, Gunther
    Srebro, Monika
    Valev, Ventsislav K.
    Koeckelberghs, Guy
    Clays, Koen
    Autschbach, Jochen
    Verbiest, Thierry
    CHEMISTRY OF MATERIALS, 2013, 25 (07) : 1139 - 1143
  • [32] Giant Faraday rotation induced by the Berry phase in bilayer graphene under strong terahertz fields
    Yang, Fan
    Xu, Xiaodong
    Liu, Ren-Bao
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [33] Giant inverse Faraday effect in a plasmonic crystal ring
    Aizin, G. R.
    Mikalopas, J.
    Shur, M.
    OPTICS EXPRESS, 2022, 30 (08): : 13733 - 13744
  • [34] Weak enhanced resonant Faraday rotation in pure cobalt plasmonic lattices: Thickness dependent Faraday rotation studies
    Hoang Mai Luong
    Ai, Bin
    Zhao, Yiping
    Tho Duc Nguyen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 468 : 79 - 84
  • [35] Faraday rotation effect in periodic graphene structure
    Liu, Daqing
    Zhang, Shengli
    Ma, Ning
    Li, Xinghua
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (02)
  • [36] THE FARADAY ROTATION DUE TO FREE ELECTRONS IN CDS
    BALKANSKI, M
    HOPFIELD, JJ
    PHYSICA STATUS SOLIDI, 1962, 2 (06): : 623 - 635
  • [37] Giant nonlinear Faraday rotation in iron doped CdMnTe
    Garcia, Hernando
    Trivedi, Sudhir
    OPTICAL MATERIALS EXPRESS, 2024, 14 (02): : 538 - 548
  • [38] Giant Faraday rotation in an asymmetric semimagnetic semiconductor microcavity
    Haddad, M.
    Frey, R.
    Flytzanis, C.
    Andre, R.
    IQEC, International Quantum Electronics Conference Proceedings, 1999,
  • [39] Quantitative measurement of giant and quantized microwave Faraday rotation
    Suresh, Vishnunarayanan
    Pinsolle, Edouard
    Lupien, Christian
    Martz-Oberlander, Talia J.
    Lilly, Michael P.
    Reno, John L.
    Gervais, Guillaume
    Szkopek, Thomas
    Reulet, Bertrand
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [40] Faraday rotation in magnetically biased graphene at microwave frequencies
    Sounas, D. L.
    Skulason, H. S.
    Nguyen, H. V.
    Guermoune, A.
    Siaj, M.
    Szkopek, T.
    Caloz, C.
    APPLIED PHYSICS LETTERS, 2013, 102 (19)