Stochastic resonance in the two-dimensional q-state clock models

被引:5
|
作者
Park, Hye Jin [1 ]
Baek, Seung Ki [2 ]
Kim, Beom Jun [1 ]
机构
[1] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[2] Pukyong Natl Univ, Dept Phys, Pusan 608737, South Korea
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 03期
基金
新加坡国家研究基金会;
关键词
ISING-MODEL; SYSTEMS; TRANSITIONS; SPIN;
D O I
10.1103/PhysRevE.89.032137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We numerically study stochastic resonance in the two-dimensional q-state clock models from q = 2 to 7 under a weak oscillating magnetic field. As in the mean-field case, we observe double resonance peaks, but the detailed response strongly depends on the direction of the field modulation for q >= 5 where the quasiliquid phase emerges. We explain this behavior in terms of free-energy landscapes on the two-dimensional magnetization plane.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [21] Large-q expansion of the energy and magnetization cumulants for the two-dimensional q-state Potts model
    Arisue, H
    Tabata, K
    NUCLEAR PHYSICS B, 1999, 546 (03) : 558 - 584
  • [22] Large-q expansion of the two-dimensional q-state Potts model by the finite lattice method
    Arisue, H
    Tabata, K
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 754 - 756
  • [23] Geometrical four-point functions in the two-dimensional critical Q-state Potts model: connections with the RSOS models
    He, Yifei
    Grans-Samuelsson, Linnea
    Jacobsen, Jesper Lykke
    Saleur, Hubert
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (05)
  • [24] Otto Engine for the q-State Clock Model
    Angelo Aguilera, Michel
    Jose Pena, Francisco
    Andres Negrete, Oscar
    Vargas, Patricio
    ENTROPY, 2022, 24 (02)
  • [25] Boundary and bulk phase transitions in the two-dimensional Q-state Potts model (Q>4)
    Iglói, F
    Carlon, E
    PHYSICAL REVIEW B, 1999, 59 (05): : 3783 - 3792
  • [26] Monte Carlo study of duality and the Berezinskii-Kosterlitz-Thouless phase transitions of the two-dimensional q-state clock model in flow representations
    Chen, Hao
    Hou, Pengcheng
    Fang, Sheng
    Deng, Youjin
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [27] Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model
    Dai, Yan-Wei
    Cho, Sam Young
    Batchelor, Murray T.
    Zhou, Huan-Qiang
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [28] Unconventional U(1) to Zq crossover in quantum and classical q-state clock models
    Patil, Pranay
    Shao, Hui
    Sandvik, Anders W.
    PHYSICAL REVIEW B, 2021, 103 (05)
  • [29] Geometrical vs. Fortuin-Kasteleyn clusters in the two-dimensional q-state Potts model
    Janke, W
    Schakel, AMJ
    NUCLEAR PHYSICS B, 2004, 700 (1-3) : 385 - 406
  • [30] PROPERTIES OF THE Q-STATE CLOCK MODEL FOR Q = 4, 5, AND 6
    TOBOCHNIK, J
    PHYSICAL REVIEW B, 1982, 26 (11): : 6201 - 6207