We consider the Cauchy problem associated to the generalized Benjamin-Bona-Mahony (BBM) equation for given data in the L-2-based Sobolev spaces. Depending on the order of nonlinearity and dispersion, we prove that the Cauchy problem is ill-posed for data with lower order Sobolev regularity. We also prove that, in certain range of the Sobolev regularity, even if the solution exists globally in time, it fails to be smooth.
机构:
Univ Denis Diderot Paris 7, Inst Math Mat Jussieu, CNRS, UMR 7586,Equipe Anal Fonct, Paris, FranceUniv Denis Diderot Paris 7, Inst Math Mat Jussieu, CNRS, UMR 7586,Equipe Anal Fonct, Paris, France
Gerard-Varet, D.
Nguyen, T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Inst Math Mat Jussieu, Equipe Anal Fonct, Paris, FranceUniv Denis Diderot Paris 7, Inst Math Mat Jussieu, CNRS, UMR 7586,Equipe Anal Fonct, Paris, France
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio de Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio de Janeiro, RJ, Brazil
Carvajal, X.
Panthee, M.
论文数: 0引用数: 0
h-index: 0
机构:
IMECC UNICAMP, Dept Math, BR-13083859 Sao Paulo, SP, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio de Janeiro, RJ, Brazil