Convex perceptrons

被引:0
|
作者
Garcia, Daniel [1 ]
Gonzalez, Ana
Dorronsoro, Jose R.
机构
[1] Univ Autonoma Madrid, Dpto Ingn Informat, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Inst Ingn Conocimiento, E-28049 Madrid, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Statistical learning theory make large margins an important property of linear classifiers and Support Vector Machines were designed with this target in mind. However, it has been shown that large margins can also be obtained when much simpler kernel perceptrons are used together with ad-hoe updating rules, different in principle from Rosenblatt's rule. In this work we will numerically demonstrate that, rewritten in a convex update setting and using an appropriate updating vector selection procedure, Rosenblatt's rule does indeed provide maximum margins for kernel perceptrons, although with a convergence slower than that achieved by other more sophisticated methods, such as the Schlesinger-Kozinec (SK) algorithm.
引用
收藏
页码:578 / 585
页数:8
相关论文
共 50 条
  • [21] Margin Perceptrons for Graphs
    Jain, Brijnesh
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3851 - 3856
  • [22] Trustworthy Bayesian Perceptrons
    Walkeet, Markus
    Amirkhanian, Hayk
    Hubert, Marco F.
    Hanebeck, Uwe D.
    2024 27TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, FUSION 2024, 2024,
  • [23] SELECTING EXAMPLES FOR PERCEPTRONS
    WATKIN, TLH
    RAU, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (01): : 113 - 121
  • [24] PERCEPTRONS AS FIGURE DETECTORS
    ROSENFELD, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (02) : 304 - 305
  • [25] Evolving multilayer perceptrons
    Castillo, PA
    Carpio, J
    Merelo, JJ
    Prieto, A
    Rivas, V
    Romero, G
    NEURAL PROCESSING LETTERS, 2000, 12 (02) : 115 - 127
  • [26] OPTIMAL GENERALIZATION IN PERCEPTRONS
    KINOUCHI, O
    CATICHA, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23): : 6243 - 6250
  • [27] Generalization performances of perceptrons
    Gavin, G
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 259 - 264
  • [28] On the properties of periodic perceptrons
    McCaughan, DB
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 188 - 193
  • [29] On learning a function of perceptrons
    Anthony, M
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 967 - 972
  • [30] Progressive Operational Perceptrons
    Kiranyaz, Serkan
    Ince, Turker
    Iosifidis, Alexandros
    Gabbouj, Moncef
    NEUROCOMPUTING, 2017, 224 : 142 - 154