A CONVERGENCE RESULT FOR FINITE VOLUME SCHEMES ON RIEMANNIAN MANIFOLDS

被引:11
|
作者
Giesselmann, Jan [1 ]
机构
[1] Univ Stuttgart IANS, D-70569 Stuttgart, Germany
关键词
Finite volume method; conservation law; curved manifold; SHALLOW-WATER TURBULENCE; SPHERICAL GEOMETRY; HYPERBOLIC SYSTEMS; SOLAR TACHOCLINE; GALERKIN METHODS; EQUATIONS; PROPAGATION; WAVES; GRIDS; JETS;
D O I
10.1051/m2an/2009013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law u(t) + del(g) . f( x, u) = 0 on a closed Riemannian manifold M. For an initial value in BV( M) we will show that these schemes converge with a h 1/4 convergence rate towards the entropy solution. When M is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to h 1/2.
引用
收藏
页码:929 / 955
页数:27
相关论文
共 50 条