N-type Doping Strategies for InGaAs

被引:8
|
作者
Aldridge, Henry, Jr. [1 ]
Lind, Aaron G. [1 ]
Bomberger, Cory C. [2 ]
Puzyrev, Yevgeniy [3 ,4 ]
Zide, Joshua M. O. [2 ]
Pantelides, Sokrates T. [3 ,4 ]
Law, Mark E. [1 ]
Jones, Kevin S. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
III-V semiconductors; Semiconductor processing; Thermal processing; Dopant activation; Dopant diffusion; DOPED GAAS; POSITRON-ANNIHILATION; ELECTRICAL ACTIVATION; JUNCTION FORMATION; SULFUR DIFFUSION; ION-IMPLANTATION; DEFECT FORMATION; NATIVE DEFECTS; POINT-DEFECTS; DUAL IMPLANTS;
D O I
10.1016/j.mssp.2016.12.017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Significant research effort has been placed into the use of III-V compound semiconductors, including InGaAs as channel materials in CMOS logic devices due to their superior electron mobilities compared to Si and other more conventional semiconductor materials. One of the major factors preventing industrial adoption of InGaAs as a channel material involves the minimization of source and drain contact resistances. To understand challenges to minimization of contact resistance, this work will outline the effectiveness of several doping approaches that have been attempted for n-type InGaAs including the use of silicon as a dopant and the effectiveness of each approach in achieving the highest level of activation possible. Previous and recently reported dopant diffusion behaviors are also included and discussed.
引用
收藏
页码:171 / 179
页数:9
相关论文
共 50 条
  • [1] N-type doping strategies for InGaAs (Withdrawn Publication)
    Aldridge, Henry, Jr.
    Lind, Aaron G.
    Bomberger, Cory C.
    Puzyrev, Yevgeniy
    Zide, Joshua M. O.
    Pantelides, Sokrates T.
    Law, Mark E.
    Jones, Kevin S.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 57 : 39 - 47
  • [2] n-type doping of diamond
    Koizumi, Satoshi
    Suzuki, Mariko
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (13): : 3358 - 3366
  • [3] n-type doping of diamond
    Koizumi, Satoshi
    [J]. Diamond Electronics - Fundamentals to Applications, 2007, 956 : 55 - 60
  • [4] Controlling n-Type Carrier Density from Er Doping of InGaAs with MBE Growth Temperature
    Burke, Peter G.
    Buehl, Trevor E.
    Gilles, Pernot
    Lu, Hong
    Shakouri, Ali
    Palmstrom, Chris J.
    Bowers, John E.
    Gossard, Arthur C.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (05) : 948 - 953
  • [5] Controlling n-Type Carrier Density from Er Doping of InGaAs with MBE Growth Temperature
    Peter G. Burke
    Trevor E. Buehl
    Pernot Gilles
    Hong Lu
    Ali Shakouri
    Chris J. Palmstrom
    John E. Bowers
    Arthur C. Gossard
    [J]. Journal of Electronic Materials, 2012, 41 : 948 - 953
  • [6] MEASUREMENT OF HOLE VELOCITY IN N-TYPE INGAAS
    HILL, P
    SCHLAFER, J
    POWAZINIK, W
    URBAN, M
    EICHEN, E
    OLSHANSKY, R
    [J]. APPLIED PHYSICS LETTERS, 1987, 50 (18) : 1260 - 1262
  • [7] Recent advances in n-type organic thermoelectric materials, dopants, and doping strategies
    Tripathi, Ayushi
    Lee, Yoonjoo
    Lee, Soonyong
    Woo, Han Young
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (16) : 6114 - 6140
  • [8] Investigation of n-type doping strategies for Mg3Sb2
    Gorai, Prashun
    Ortiz, Brenden R.
    Toberer, Eric S.
    Stevanovic, Vladan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (28) : 13806 - 13815
  • [9] n-type doping of oxides by hydrogen
    Kiliç, Ç
    Zunger, A
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (01) : 73 - 75
  • [10] N-type implantation doping of GaN
    Nakano, Y
    Kachi, T
    Jimbo, T
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2003, 6 (5-6) : 515 - 517