Preparation and characterization of high concentration graphene aqueous dispersion

被引:1
|
作者
Wang Chen [1 ]
Yan Shao-jiu [1 ]
Nan Wen-zheng [1 ]
Wang Ji-xian [1 ]
Peng Si-kan [1 ]
机构
[1] AECC Beijing Inst Aeronaut Mat, Res Ctr Graphene Applicat, Beijing 100095, Peoples R China
来源
关键词
flake graphite; high-pressure homogenization liquid phase exfoliation; graphene aqueous dispersion; high concentration; FEW-LAYER GRAPHENE; SURFACTANT ADSORPTION; EXFOLIATION; GROWTH; ENERGY; FILMS;
D O I
10.11868/j.issn.1001-4381.2018.000478
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high concentration graphene aqueous dispersion was obtained by high-pressure homogenization liquid phase exfoliation (HPH-LPE) of flake graphite in water. The effect of surfactant concentration, HPH pressure and cycle number on the concentration of graphene dispersion C-G was studied by UV-Vis spectra. The structure and morphology of graphene were analyzed by Roman spectra, SEM and TEM. The results indicate that C-G is obtained up to 324.3 mg.L-1 for the first time by the parameters optimization, which is 10 times higher than that obtained by sonication; graphene obtained has few defects, thin thickness and large size, indicating the good quality of graphene production; the conductivity of free-standing film prepared by the obtained graphene dispersion can reach 3.2 X 10(4) S.m(-1).
引用
收藏
页码:56 / 63
页数:8
相关论文
共 31 条
  • [1] High-rate production of few-layer graphene by high-power probe sonication
    Arao, Yoshihiko
    Kubouchi, Masatoshi
    [J]. CARBON, 2015, 95 : 802 - 808
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [4] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [5] Mechanically strong, electrically conductive, and biocompatible graphene paper
    Chen, Haiqun
    Mueller, Marc B.
    Gilmore, Kerry J.
    Wallace, Gordon G.
    Li, Dan
    [J]. ADVANCED MATERIALS, 2008, 20 (18) : 3557 - +
  • [6] Chen Shi-gin, 2012, Chinese Journal of Liquid Crystals and Displays, V27, P595, DOI 10.3788/YJYXS20122705.0595
  • [7] GEIM A K. NOVOSELOV K S, 2007, NAT MATER, V6, P153
  • [8] GOTHSCH T, 2015, MICROFLUID NANOFLUID, V18, P1
  • [9] Single Terrace Growth of Graphene on a Metal Surface
    Guenther, S.
    Daenhardt, S.
    Wang, B.
    Bocquet, M. -L.
    Schmitt, S.
    Wintterlin, J.
    [J]. NANO LETTERS, 2011, 11 (05) : 1895 - 1900
  • [10] High-yield production of graphene by liquid-phase exfoliation of graphite
    Hernandez, Yenny
    Nicolosi, Valeria
    Lotya, Mustafa
    Blighe, Fiona M.
    Sun, Zhenyu
    De, Sukanta
    McGovern, I. T.
    Holland, Brendan
    Byrne, Michele
    Gun'ko, Yurii K.
    Boland, John J.
    Niraj, Peter
    Duesberg, Georg
    Krishnamurthy, Satheesh
    Goodhue, Robbie
    Hutchison, John
    Scardaci, Vittorio
    Ferrari, Andrea C.
    Coleman, Jonathan N.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (09) : 563 - 568