Variation of Antioxidant Activity and Total Phenolic Content of Tea (Camellia sinensis L. O. Kuntze) Genotypes

被引:1
|
作者
Savsatli, Yusuf [1 ]
Ozcan, Aysel [1 ]
Civelekoglu, Oguzhan [2 ]
机构
[1] Recep Tayyip Erdogan Univ, Fac Agr, Field Crops Dept, Rize, Turkey
[2] Gen Secretaryship Natl Tea Council, Rize Commod Exchange, Rize, Turkey
关键词
Tea; Genotype; FRAP; TPC; TOTAL POLYPHENOL CONTENT; SEASONAL-VARIATION; CAPACITY; GREEN; POWER; CONSUMPTION; FRESH;
D O I
10.18016/ksutarimdoga.vi.744662
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This study was carried out to determine tea (Camellia sinensis L. O. Kuntze) genotypes with high antioxidant activity and also high total phenolic content (TPC) in Rize/Turkey conditions in 2017. In the research, the seeds collected from tea plantations located at different five locations of Rize were used. Plants were grown under controlled conditions in pots in greenhouse at first and then transferred to field conditions. Harvest of fresh leaves was realized for 3.5 leaves (three leaves and bud) in August. Ferric-Reducing Antioxidant Power (FRAP) and total phenol content of young leaves of selected 103 genotypes were determined. As a result, FRAP values varied between 638.4 and 1093.0 mg FeSO4 g(-1) dw while total phenol content varied from 210.9 to 450.6 mg GAE g(-1) dw depending on the genotypes. FRAP values belonging each genotype group representing locations were very close to each other. On the other hand, 87 of a total of 103 genotypes had high antioxidant values. The fact that the genotypes showed a high level of antioxidant activity and total phenol content reveals the presence of evaluable tea genotypes to be used in tea breeding in Rize.
引用
收藏
页码:40 / 48
页数:9
相关论文
共 50 条
  • [41] Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze)
    Kamunya, S. M.
    Wachira, F. N.
    Pathak, R. S.
    Korir, R.
    Sharma, V.
    Kumar, R.
    Bhardwaj, P.
    Chalo, R.
    Ahuja, P. S.
    Sharma, R. K.
    TREE GENETICS & GENOMES, 2010, 6 (06) : 915 - 929
  • [42] Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O.!Kuntze
    Nagar, PK
    Sood, S
    ACTA PHYSIOLOGIAE PLANTARUM, 2006, 28 (02) : 165 - 169
  • [43] Diversity Analysis of Diazotrophic Bacteria Associated with the Roots of Tea (Camellia sinensis (L.) O. Kuntze)
    Arvind, Gulati
    Sood, Swati
    Rahi, Praveen
    Thakur, Rishu
    Chauhan, Sunita
    Chadha, Isha Chawla Nee
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 21 (06) : 545 - 555
  • [44] PHENOLICS METABOLISM IN BORON-DEFICIENT TEA [CAMELLIA SINENSIS (L.) O. KUNTZE] PLANTS
    Hajiboland, Roghieh
    Bahrami-Rad, Sara
    Bastani, Soodabeh
    ACTA BIOLOGICA HUNGARICA, 2013, 64 (02): : 196 - 206
  • [45] Pseudo-self-incompatibility in some tea clones (Camellia sinensis (L.) O.!Kuntze)
    Wachira, FN
    Kamunya, SK
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2005, 80 (06): : 716 - 720
  • [46] INVITRO CLONAL PROPAGATION OF TEA (CAMELLIA-SINENSIS (L) KUNTZE,O.)
    AGARWAL, B
    SINGH, U
    BANERJEE, M
    PLANT CELL TISSUE AND ORGAN CULTURE, 1992, 30 (01) : 1 - 5
  • [47] An Improved Protocol for the Isolation of RNA from Roots of Tea (Camellia sinensis (L.) O. Kuntze)
    Muoki, Richard Chalo
    Paul, Asosii
    Kumari, Anita
    Singh, Kashmir
    Kumar, Sanjay
    MOLECULAR BIOTECHNOLOGY, 2012, 52 (01) : 82 - 88
  • [48] Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze)
    S. M. Kamunya
    F. N. Wachira
    R. S. Pathak
    R. Korir
    V. Sharma
    R. Kumar
    P. Bhardwaj
    R. Chalo
    P. S. Ahuja
    R. K. Sharma
    Tree Genetics & Genomes, 2010, 6 : 915 - 929
  • [49] Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]
    Kashmir Singh
    Sanjay Kumar
    Sudesh Kumar Yadav
    Paramvir Singh Ahuja
    Plant Biotechnology Reports, 2009, 3 : 95 - 101
  • [50] Classification and Origins of Cultivated Tea [Camellia sinensis (L.) O. Kuntze] Based on SNP Analysis
    Borthakur, Devajit
    Tan, Hua-Wei
    Meinhardt, Lyndel
    Wang, Boyi
    Zhou, Lin
    Fang, Wanping
    Zhang, Dapeng
    HORTSCIENCE, 2018, 53 (09) : S60 - S61