THE ZELEZNIKOW PROBLEM ON A CLASS OF ADDITIVELY IDEMPOTENT SEMIRINGS

被引:1
|
作者
Shao, Yong [1 ]
Crvenkovic, Sinisa [2 ]
Mitrovic, Melanija [3 ]
机构
[1] Northwest Univ China, Dept Math, Xian 710127, Peoples R China
[2] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
[3] Univ Nis, Fac Mech Engn, Nish 18000, Serbia
关键词
semiring; amenable order; regular ordered semigroup; orthodox semigroup; inverse semigroup; Clifford semigroup; AMENABLE ORDERS;
D O I
10.1017/S1446788713000359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A semiring is a set S with two binary operations + and . such that both the additive reduct S (+) and the multiplicative reduct S (.) are semigroups which satisfy the distributive laws. If R is a ring, then, following Chaptal ['Anneaux dont le demi-groupe multiplicatif est inverse', C. R. Acad. Sci. Paris Ser. A-B 262 (1966), 274-277], R-. is a union of groups if and only if R-. is an inverse semigroup if and only if R-. is a Clifford semigroup. In Zeleznikow ['Regular semirings', Semigroup Forum 23 (1981), 119-136], it is proved that if R is a regular ring then R-. is orthodox if and only if R-. is a union of groups if and only if R-. is an inverse semigroup if and only if R-. is a Clifford semigroup. The latter result, also known as Zeleznikow's theorem, does not hold in general even for semirings S with S (+) a semilattice Zeleznikow ['Regular semirings', Semigroup Forum 23 (1981), 119-136]. The Zeleznikow problem on a certain class of semirings involves finding condition(s) such that Zeleznikow's theorem holds on that class. The main objective of this paper is to solve the Zeleznikow problem for those semirings S for which S (+) is a semilattice.
引用
收藏
页码:404 / 420
页数:17
相关论文
共 50 条
  • [21] Prime congruences of additively idempotent semirings and a Nullstellensatz for tropical polynomials
    Joo, Daniel
    Mincheva, Kalina
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (03): : 2207 - 2233
  • [22] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [23] FULLY IDEMPOTENT SEMIRINGS
    AHSAN, J
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (06) : 185 - 188
  • [24] MULTIPLICATIVELY IDEMPOTENT SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    Svrcek, Filip
    MATHEMATICA BOHEMICA, 2015, 140 (01): : 35 - 42
  • [25] A Note on Idempotent Semirings
    Durcheva, Mariana
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [26] Factor rank preservers of matrices over additively-idempotent multiplicatively-cancellative semirings
    Maity, Sushobhan
    Bhuniya, A. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (05)
  • [27] ℒ-subvarieties of the variety of idempotent semirings
    Xianzhong Z.
    Shum K.P.
    Guo Y.Q.
    algebra universalis, 2001, 46 (1) : 75 - 96
  • [28] Weak commutativity in idempotent semirings
    Pastijn, F
    SEMIGROUP FORUM, 2006, 72 (02) : 283 - 311
  • [29] Weak Commutativity in Idempotent Semirings
    F. Pastijn
    Semigroup Forum, 2006, 72 : 283 - 311
  • [30] Idempotent distributive semirings with involution
    Dolinka, I
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2003, 13 (05) : 597 - 625