A Strawberry Detection System Using Convolutional Neural Networks

被引:0
|
作者
Lamb, Nikolas [1 ]
Chuah, Mooi Choo [2 ]
机构
[1] Clarkson Univ, Comp Sci, Potsdam, NY 13699 USA
[2] Lehigh Univ, Comp Sci, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
precision agriculture; deep learning; fruit detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, robotic technologies, e.g. drones or autonomous cars have been applied to the agricultural sectors to improve the efficiency of typical agricultural operations. Some agricultural tasks that are ideal for robotic automation are yield estimation and robotic harvesting. For these applications, an accurate and reliable image-based detection system is critically important. In this work, we present a low-cost strawberry detection system based on convolutional neural networks. Ablation studies are presented to validate the choice of hyper-parameters, framework, and network structure. Additional modifications to both the training data and network structure that improve precision and execution speed, e.g., input compression, image tiling, color masking, and network compression, are discussed. Finally, we present a final network implementation on a Raspberry Pi 3B that demonstrates a detection speed of 1.63 frames per second and an average precision of 0.842.
引用
收藏
页码:2515 / 2520
页数:6
相关论文
共 50 条
  • [41] Crack Detection in Paintings Using Convolutional Neural Networks
    Sizyakin, Roman
    Cornelis, Bruno
    Meeus, Laurens
    Dubois, Helene
    Martens, Maximiliaan
    Voronin, Viacheslav
    Pizurica, Aleksandra
    IEEE ACCESS, 2020, 8 : 74535 - 74552
  • [42] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [43] Fish Detection and Classification Using Convolutional Neural Networks
    Rekha, B. S.
    Srinivasan, G. N.
    Reddy, Sravan Kumar
    Kakwani, Divyanshu
    Bhattad, Niraj
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1221 - 1231
  • [44] Detection of Forest Fire using Convolutional Neural Networks
    Oliver, A. Sheryl
    Ashwanthika, U.
    Aswitha, R.
    2020 7TH IEEE INTERNATIONAL CONFERENCE ON SMART STRUCTURES AND SYSTEMS (ICSSS 2020), 2020, : 415 - 420
  • [45] Robust smile detection using convolutional neural networks
    Bianco, Simone
    Celona, Luigi
    Schettini, Raimondo
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)
  • [46] Detection of Dummy Trajectories Using Convolutional Neural Networks
    Pan, Jiaji
    Liu, Yining
    Zhang, Weiming
    SECURITY AND COMMUNICATION NETWORKS, 2019,
  • [47] Investigation of Pneumonia Detection using Convolutional Neural Networks
    Cicenas, Benediktas
    Abromavicius, Vytautas
    2022 IEEE OPEN CONFERENCE OF ELECTRICAL, ELECTRONIC AND INFORMATION SCIENCES (ESTREAM), 2022,
  • [48] Fall detection using mixtures of convolutional neural networks
    Ha, Thao V.
    Nguyen, Hoang M.
    Thanh, Son H.
    Nguyen, Binh T.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (06) : 18091 - 18118
  • [49] A Method for Deepfake Detection Using Convolutional Neural Networks
    S. S. Volkova
    Scientific and Technical Information Processing, 2023, 50 : 475 - 485
  • [50] Colonoscopic polyp detection using convolutional neural networks
    Park, Sun Young
    Sargent, Dusty
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2016, 9785