Part Segmentation of Visual Hull for 3D Human Pose Estimation

被引:8
|
作者
Kanaujia, Atul [1 ]
Kittens, Nicholas [1 ]
Ramanathan, Narayanan [1 ]
机构
[1] ObjectVideo Inc, Reston, VA 20191 USA
关键词
MOTION CAPTURE;
D O I
10.1109/CVPRW.2013.154
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present an algorithm for estimating 3D pose of human targets using multiple, synchronized video streams obtained from a set of calibrated visual sensors. Our method uses 3D visual hull, reconstructed from multi-view image silhouettes, to estimate skeleton and 3D pose of the human target. The key contribution of this work is to extend predictive human pose estimation algorithms used in the kinect gaming system to 3D visual hull data. In 3D space, viewpoint invariance is achieved by transforming world reference frame to human centered reference frame. To do so, we first estimate the rigid body orientation and translation of the target from the shape of the visual hull. We then apply discriminative classifiers in the human centered reference frame to segment the 3D voxels of the visual hull into semantic part segments. The part clusters are then used to estimate a 3D pose that best aligns with the detected joint centers while conforming to the part non sell-intersection constraints. Claims made in the work are supported by extensive experimental evaluation on both synthetic and real dataset.
引用
收藏
页码:542 / 549
页数:8
相关论文
共 50 条
  • [31] 3D human pose estimation by depth map
    Jianzhai Wu
    Dewen Hu
    Fengtao Xiang
    Xingsheng Yuan
    Jiongming Su
    The Visual Computer, 2020, 36 : 1401 - 1410
  • [32] Reflection-aware 3D mirror segmentation and pose estimation
    Madeira, Tiago
    Oliveira, Miguel
    Dias, Paulo
    VISUAL COMPUTER, 2024,
  • [33] JPA: A Joint-Part Attention for Mitigating Overfocusing on 3D Human Pose Estimation
    Yang, Dengqing
    Tang, Zhenhua
    Wu, Jinmeng
    Wang, Shuo
    Cheng, Lechao
    Hao, Yanbin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VI, 2025, 15036 : 123 - 137
  • [34] PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation
    Gong, Kehong
    Zhang, Jianfeng
    Feng, Jiashi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8571 - 8580
  • [35] Neural Descent for Visual 3D Human Pose and Shape
    Zanfir, Andrei
    Bazavan, Eduard Gabriel
    Zanfir, Mihai
    Freeman, William T.
    Sukthankar, Rahul
    Sminchisescu, Cristian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14479 - 14488
  • [36] Application of 3D Human Pose Estimation for Behavioral Reproduction
    Dare, Kodjine
    Ben Abdessalem, Hamdi
    Frasson, Claude
    INTELLIGENT TUTORING SYSTEMS, ITS 2022, 2022, 13284 : 190 - 196
  • [37] Towards Viewpoint Invariant 3D Human Pose Estimation
    Haque, Albert
    Peng, Boya
    Luo, Zelun
    Alahi, Alexandre
    Yeung, Serena
    Li Fei-Fei
    COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 160 - 177
  • [38] Adversarially Parameterized Optimization for 3D Human Pose Estimation
    Jack, Dominic
    Maire, Frederic
    Eriksson, Anders
    Shirazi, Sareh
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 145 - 154
  • [39] 3D Human Pose Estimation with Spatial and Temporal Transformers
    Zheng, Ce
    Zhu, Sijie
    Mendieta, Matias
    Yang, Taojiannan
    Chen, Chen
    Ding, Zhengming
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 11636 - 11645
  • [40] 3D human pose estimation with siamese equivariant embedding
    Veges, Marton
    Varga, Viktor
    Lorincz, Andras
    NEUROCOMPUTING, 2019, 339 : 194 - 201