Accurate modelling of lossy SIW resonators using a neural network residual kriging approach

被引:4
|
作者
Angiulli, Giovanni [1 ]
De Carlo, Domenico [2 ]
Sgro, Annalisa [2 ]
Versaci, Mario [2 ]
Morabito, Francesco Carlo [2 ]
机构
[1] Univ Mediterranea, DIIES, Via Graziella Loc Feo di Vito, I-89122 Reggio Di Calabria, Italy
[2] Univ Mediterranea, DICEAM, Via Graziella Loc Feo di Vito, I-89122 Reggio Di Calabria, Italy
来源
IEICE ELECTRONICS EXPRESS | 2017年 / 14卷 / 06期
关键词
CAD; artificial neural networks; kriging; lossy SIW resonators; COMPUTATION;
D O I
10.1587/elex.14.20170073
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a computational intelligence method to model lossy substrate integrated waveguide (SIW) cavity resonators, the Neural Network Residual Kriging (NNRK) approach, is presented. Numerical results for the fundamental resonant frequency f(r) and related quality factor Q(r) computed for the case of lossy hexagonal SIW resonators demonstrate the NNRK superior estimation accuracy compared to that provided by the conventional Artificial Neural Networks (ANNs) models for these devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach
    Youngmin Seo
    Sungwon Kim
    Vijay P. Singh
    [J]. Water Resources Management, 2015, 29 : 2189 - 2204
  • [2] Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach
    Seo, Youngmin
    Kim, Sungwon
    Singh, Vijay P.
    [J]. WATER RESOURCES MANAGEMENT, 2015, 29 (07) : 2189 - 2204
  • [3] Flight Load Calculation Using Neural Network Residual Kriging
    Yan, Qi
    Wan, Zhiqiang
    Yang, Chao
    [J]. AEROSPACE, 2023, 10 (07)
  • [4] Wavelet analysis residual kriging vs. neural network residual kriging
    V. Demyanov
    S. Soltani
    M. Kanevski
    S. Canu
    M. Maignan
    E. Savelieva
    V. Timonin
    V. Pisarenko
    [J]. Stochastic Environmental Research and Risk Assessment, 2001, 15 : 18 - 32
  • [5] Wavelet analysis residual kriging vs. neural network residual kriging
    Demyanov, V
    Soltani, S
    Kanevski, M
    Canu, S
    Maignan, M
    Savelieva, E
    Timonin, V
    Pisarenko, V
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2001, 15 (01) : 18 - 32
  • [6] Feed Forward Neural Network Characterization of Circular SIW Resonators
    Angiulli, G.
    Arnieri, E.
    De Carlo, D.
    Amendola, G.
    [J]. 2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 3543 - +
  • [7] Modelling SIW resonators using Support Vector Regression Machines
    Angiulli, G.
    de Carlo, D.
    Tringali, S.
    Amendola, G.
    Arnieri, E.
    [J]. PIERS 2008 CAMBRIDGE, PROCEEDINGS, 2008, : 406 - +
  • [8] On the Performance of Neural Network Residual Kriging in Radio Environment Mapping
    Sato, Koya
    Inage, Kei
    Fujii, Takeo
    [J]. IEEE ACCESS, 2019, 7 : 94557 - 94568
  • [9] Residual stress prediction using neural network approach
    Menda, František
    More, Marcel
    Cardona-Cuervo, G.P.
    Martinez-Tabares, F.J.
    [J]. Applied Mechanics and Materials, 2014, 611 : 436 - 440
  • [10] Resistorless Implementation of Lossy Filters Using Coaxial SIW Resonators With Non-uniform Q
    Marin, Sandra
    Martinez, Jorge D.
    Boria, Vicente E.
    [J]. 2021 IEEE MTT-S INTERNATIONAL MICROWAVE FILTER WORKSHOP (IMFW), 2021, : 27 - 29