Modelling SIW resonators using Support Vector Regression Machines

被引:0
|
作者
Angiulli, G. [1 ]
de Carlo, D. [1 ]
Tringali, S. [1 ]
Amendola, G. [2 ]
Arnieri, E. [2 ]
机构
[1] Univ Mediterranea, DIMET, I-89100 Reggio Di Calabria, Italy
[2] Univ Della Calabria, DEIS, I-87036 Arcavacata Di Rende, Italy
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Substrate Integrated Waveguide (SIW) technology combines the advantages of low cost building processes and the low loss features of waveguide devices. A large number of SIW-based devices have been realized in these last years. Many of them are based on SIW resonators. Very recently, in order to develop fast CAD models of microwave components and devices, Support Vector Regression Machines (SVRMs) have been proposed. In this work we investigate the performances of SVRMs for modeling SIW resonators.
引用
收藏
页码:406 / +
页数:2
相关论文
共 50 条
  • [1] Modelling functional additive quantile regression using support vector machines approach
    Crambes, Christophe
    Gannoun, Ali
    Henchiri, Yousri
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 639 - 668
  • [2] Microwave devices and antennas modelling by support vector regression machines
    Angiulli, G.
    Cacciola, M.
    Versaci, M.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1589 - 1592
  • [3] Evapotranspiration modelling using support vector machines
    Kisi, Ozgur
    Cimen, Mesut
    [J]. HYDROLOGICAL SCIENCES JOURNAL, 2009, 54 (05) : 918 - 928
  • [4] Support vector regression machines
    Drucker, H
    Burges, CJC
    Kaufman, L
    Smola, A
    Vapnik, V
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9: PROCEEDINGS OF THE 1996 CONFERENCE, 1997, 9 : 155 - 161
  • [5] Robust classification and regression using support vector machines
    Trafalis, Theodore B.
    Gilbert, Robin C.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 173 (03) : 893 - 909
  • [6] Rainfall Forecasting using Support Vector Regression Machines
    Velasco, Lemuel Clark
    Aca-ac, Johanne Miguel
    Cajes, Jeb Joseph
    Lactuan, Nove Joshua
    Chit, Suwannit Chareen
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 231 - 237
  • [7] Friction Modelling Based on Support Vector Regression Machines and Genetic Algorithms
    Zhou, Jin-zhu
    Huang, Jin
    Zhou, Jing
    Li, Hua-ping
    [J]. 2008 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2008, : 1076 - 1081
  • [8] Detection of overlapping speech in meetings using Support Vector Machines and Support Vector Regression
    Yamamoto, Kiyoshi
    Asano, Futoshi
    Yamada, Takeshi
    Kitawaki, Nobuhiko
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (08): : 2158 - 2165
  • [9] Modelling Concrete Strength Using Support Vector Machines
    Yang, Haiying
    Dong, Yifeng
    [J]. CIVIL ENGINEERING, ARCHITECTURE AND SUSTAINABLE INFRASTRUCTURE II, PTS 1 AND 2, 2013, 438-439 : 170 - +
  • [10] Discussion of "Evapotranspiration modelling using support vector machines"
    Abrahart, Robert J.
    Dawson, Christian W.
    See, Linda M.
    Mount, Nick J.
    Shamseldin, Asaad Y.
    [J]. HYDROLOGICAL SCIENCES JOURNAL, 2010, 55 (08) : 1442 - 1450