Support vector regression machines

被引:0
|
作者
Drucker, H
Burges, CJC
Kaufman, L
Smola, A
Vapnik, V
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new regression technique based on Vapnik's concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space because SVR optimization does not depend on the dimensionality of the input space.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 50 条
  • [1] Support vector fuzzy regression machines
    Hong, DH
    Hwang, CH
    [J]. FUZZY SETS AND SYSTEMS, 2003, 138 (02) : 271 - 281
  • [2] Evolutionary support vector regression machines
    Stoean, Ruxandra
    Preuss, Mike
    Dumitrescu, D.
    Stoean, Catalin
    [J]. SYNASC 2006: EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 330 - +
  • [3] Analysis of Support Vector Machines Regression
    Tong, Hongzhi
    Chen, Di-Rong
    Peng, Lizhong
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) : 243 - 257
  • [4] Nonstationary regression with support vector machines
    Guillermo L. Grinblat
    Lucas C. Uzal
    Pablo F. Verdes
    Pablo M. Granitto
    [J]. Neural Computing and Applications, 2015, 26 : 641 - 649
  • [5] Adaptive support vector machines for regression
    Palaniswami, M
    Shilton, A
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1043 - 1049
  • [6] Support Vector Machines for classification and regression
    Brereton, Richard G.
    Lloyd, Gavin R.
    [J]. ANALYST, 2010, 135 (02) : 230 - 267
  • [7] Nonstationary regression with support vector machines
    Grinblat, Guillermo L.
    Uzal, Lucas C.
    Verdes, Pablo F.
    Granitto, Pablo M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2015, 26 (03): : 641 - 649
  • [8] Analysis of Support Vector Machines Regression
    Hongzhi Tong
    Di-Rong Chen
    Lizhong Peng
    [J]. Foundations of Computational Mathematics, 2009, 9 : 243 - 257
  • [9] On the noise model of Support Vector Machines Regression
    Pontil, M
    Mukherjee, S
    Girosi, F
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2000, 1968 : 316 - 324
  • [10] Regression Kernel for Prognostics with Support Vector Machines
    Mathew, Josey
    Luo, Ming
    Pang, Chee Khiang
    [J]. 2017 22ND IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2017,