Improving the tolerance of multilayer perceptrons by minimizing the statistical sensitivity to weight deviations

被引:30
|
作者
Bernier, JL [1 ]
Ortega, J [1 ]
Rojas, I [1 ]
Prieto, A [1 ]
机构
[1] Univ Granada, Dto Arquitectura & Technol Computadores, Granada, Spain
关键词
fault tolerance; backpropagation; statistical sensitivity; weight deviations; ANOVA;
D O I
10.1016/S0925-2312(99)00150-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a version of the backpropagation algorithm which increases the tolerance of a feedforward neural network against deviations in the weight values. These changes can originate either when the neural network is mapped on a given VLSI circuit where the precision and/or weight matching are low, or by physical defects affecting the neural circuits. The modified backpropagation algorithm we propose uses the statistical sensitivity of the network to changes in the weights as a quantitative measure of network tolerance and attempts to reduce this statistical sensitivity while keeping the figures for the usual training performance (in errors and time) similar to those obtained with the usual backpropagation algorithm. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [21] Worst case analysis of weight inaccuracy effects in multilayer perceptrons
    Anguita, D
    Ridella, S
    Rovetta, S
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (02): : 415 - 418
  • [22] Statistical mechanics of lossy compression for non-monotonic multilayer perceptrons
    Cousseau, Florent
    Mimura, Kazushi
    Okada, Masato
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 509 - +
  • [23] On interactions between deviations in statistical tolerance analysis
    Walter, M.S.J.
    Spruegel, T.C.
    Ziegler, P.
    Wartzack, S.
    Konstruktion, 2015, 67 (10): : 88 - 92
  • [24] An independent component analysis based weight initialization method for multilayer perceptrons
    Yam, YF
    Leung, CT
    Tam, PKS
    Siu, WC
    NEUROCOMPUTING, 2002, 48 : 807 - 818
  • [25] Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure
    Zeng, XQ
    Yeung, DS
    NEUROCOMPUTING, 2006, 69 (7-9) : 825 - 837
  • [26] A Two-Step Approach for Improving Efficiency of Feedforward Multilayer Perceptrons Network
    Ullah, Shoukat
    Hussain, Zakia
    2009 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, 2009, : 102 - 105
  • [27] Removal of hidden neurons in multilayer perceptrons by orthogonal projection and weight crosswise propagation
    Xun Liang
    Neural Computing and Applications, 2007, 16 : 57 - 68
  • [28] Removal of hidden neurons in multilayer perceptrons by orthogonal projection and weight crosswise propagation
    Liang, Xun
    NEURAL COMPUTING & APPLICATIONS, 2007, 16 (01): : 57 - 68
  • [29] Sensitivity analysis of multilayer perceptrons applied to focal-plane image compression
    Gornes, J. G. R. C.
    Petraglia, A.
    Mitra, S. K.
    IET CIRCUITS DEVICES & SYSTEMS, 2007, 1 (01) : 77 - 84
  • [30] Identifying individuality and variability in team tactics by means of statistical shape analysis and multilayer perceptrons
    Jaeger, Joerg M.
    Schoellhorn, Wolfgang I.
    HUMAN MOVEMENT SCIENCE, 2012, 31 (02) : 303 - 317