Unsupervised Synthetic Aperture Radar Image Segmentation Using Fisher Distributions

被引:46
|
作者
Galland, Frederic [1 ]
Nicolas, Jean-Marie [2 ]
Sportouche, Helene [1 ,2 ]
Roche, Muriel [1 ]
Tupin, Florence [2 ]
Refregier, Philippe [1 ]
机构
[1] Aix Marseille Univ, Ecole Cent Marseille, CNRS, Inst Fresnel, F-13013 Marseille, France
[2] CNRS LTCI, TELECOM ParisTech, Inst TELECOM, F-75634 Paris 13, France
来源
关键词
Fisher distribution; minimum description length; segmentation; stochastic complexity; synthetic aperture radar (SAR); SAR; MODEL; CLASSIFICATION; ESTIMATORS;
D O I
10.1109/TGRS.2009.2014364
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new and fast unsupervised technique for segmentation of high-resolution synthetic aperture radar (SAR) images into homogeneous regions is proposed. This technique is based on Fisher probability density functions (pdfs) of the intensity fluctuations and on an image model that consists of a patchwork of homogeneous regions with polygonal boundaries. The segmentation is obtained by minimizing the stochastic complexity of the image. Different strategies for the pdf parameter estimation are analyzed, and a fast and robust technique is proposed. Finally, the relevance of the proposed approach is demonstrated on high-resolution SAR images.
引用
收藏
页码:2966 / 2972
页数:7
相关论文
共 50 条
  • [11] Semisupervised synthetic aperture radar image segmentation with multilayer superpixels
    Wang, Can
    Su, Weimin
    Gu, Hong
    Gong, Dachen
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [12] Minimum description length synthetic aperture radar image segmentation
    Galland, F
    Bertaux, N
    Réfrégier, P
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (09) : 995 - 1006
  • [13] Segmentation of the synthetic aperture radar image using the watershed transformation and region merging technique
    Jiang C.
    Li Z.
    Chen X.
    Zhang Z.
    Yi Y.
    [J]. Li, Zhiping (emlong1976@tom.com), 2016, Science and Engineering Research Support Society (10): : 93 - 102
  • [14] Synthetic aperture radar image segmentation using edge entropy constrained Stochastic relaxation
    Cao, Yongfeng
    Sun, Hong
    Xu, Xin
    [J]. INTELLIGENT COMPUTING IN SIGNAL PROCESSING AND PATTERN RECOGNITION, 2006, 345 : 528 - 537
  • [15] Morphological approach to multiband synthetic aperture radar (SAR) image segmentation
    Loccisano, S
    Mejail, M
    JacoboBerlles, J
    [J]. STATISTICAL AND STOCHASTIC METHODS FOR IMAGE PROCESSING, 1996, 2823 : 212 - 223
  • [16] A Textural-Contextual Model for Unsupervised Segmentation of Multipolarization Synthetic Aperture Radar Images
    Akbari, Vahid
    Doulgeris, Anthony P.
    Moser, Gabriele
    Eltoft, Torbjorn
    Anfinsen, Stian N.
    Serpico, Sebastiano B.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04): : 2442 - 2453
  • [17] Water body segmentation of Synthetic Aperture Radar image using Deep Convolutional Neural Networks
    Lalchhanhima, R.
    Saha, Goutam
    Sur, Samarendra Nath
    Kandar, Debdatta
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2021, 87
  • [18] Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model
    Deng, H
    Clausi, DA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 528 - 538
  • [19] Land Cover Classification for Synthetic Aperture Radar Imagery by Using Unsupervised
    Yumu, Duygu
    Ozkazanc, Y.
    [J]. 2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 435 - 440
  • [20] A Fast Level Set Method for Synthetic Aperture Radar Ocean Image Segmentation
    Huang, Xiaoxia
    Huang, Bo
    Li, Hongga
    [J]. SENSORS, 2009, 9 (02) : 814 - 829