In this paper we examine the effect of pruning small weights in correlation associative memories. The effect is investigated by considering a fully interconnected matrix and removing weights satisfying \w(ij)\ less than or equal to epsilon. We show analytically that under suitable constraints on epsilon, the capacity of a sparsely connected associative memory is comparable to that of a fully connected one, without compromising the basins of attraction around the prototype fixed points. Simulation results supporting the analysis are also presented.
机构:
Lehrstuhl für Programmiersprachen, Universität Erlangen-Niirnberg, GermanyLehrstuhl für Programmiersprachen, Universität Erlangen-Niirnberg, Germany
Gall, R.
Nagl, M.
论文数: 0引用数: 0
h-index: 0
机构:
Angewandte Informatik, Universität Osnabrück, GermanyLehrstuhl für Programmiersprachen, Universität Erlangen-Niirnberg, Germany
Nagl, M.
IT - Information Technology,
1981,
23
(1-6):
: 61
-
71