SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATION

被引:0
|
作者
Akbari, D. [1 ]
Moradizadeh, M. [2 ]
Akbari, M. [3 ]
机构
[1] Univ Zabol, Coll Engn, Dept Surveying & Geomat Engn, Zabol, Iran
[2] Univ Isfahan, Fac Civil & Transportat Engn, Dept Geomat, Esfahan, Iran
[3] Univ Birjand, Coll Engn, Dept Civil Engn, Birjand, Iran
来源
INTERNATIONAL WORKSHOP ON PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE | 2019年 / 42-2卷 / W12期
关键词
Remote sensing; Hyperspectral image; neural network; Hierarchical segmentation; Marker selection;
D O I
10.5194/isprs-archives-XLII-2-W12-1-2019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MIN) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification
    Zhou, Yicong
    Wei, Yantao
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (07) : 1667 - 1678
  • [22] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [23] Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
    Liu, Shuai
    Jiao, Licheng
    Yang, Shuyuan
    SENSORS, 2016, 16 (10)
  • [24] Exploiting Spectral-Spatial Information Using Deep Random Forest for Hyperspectral Imagery Classification
    Tong, Fei
    Zhang, Yun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data
    Appice, Annalisa
    Guccione, Pietro
    Malerba, Donato
    PATTERN RECOGNITION, 2017, 63 : 229 - 245
  • [26] Spectral-Spatial Classification of Hyperspectral Imagery Using Support Vector and Fuzzy-MRF
    Chakravarty, Sumit
    Banerjee, Madhushri
    Chandel, Sonali
    INTELLIGENT, SECURE, AND DEPENDABLE SYSTEMS IN DISTRIBUTED AND CLOUD ENVIRONMENTS (ISDDC 2017), 2017, 10618 : 151 - 161
  • [27] Attribute Profiles of Different Attributes for Spectral-Spatial Classification of Hyperspectral Imagery
    Das A.
    Bhardwaj K.
    Patra S.
    Bruzzone L.
    Remote Sensing in Earth Systems Sciences, 2020, 3 (3-4) : 136 - 155
  • [28] Comparison of Spectral-Spatial Classification for Urban Hyperspectral Imagery with High Resolution
    Yang, He
    Ma, Ben
    Du, Qian
    Zhang, Liangpei
    2009 JOINT URBAN REMOTE SENSING EVENT, VOLS 1-3, 2009, : 808 - +
  • [29] A spectral-spatial kernel-based method for hyperspectral imagery classification
    Li, Li
    Ge, Hongwei
    Gao, Jianqiang
    ADVANCES IN SPACE RESEARCH, 2017, 59 (04) : 954 - 967
  • [30] Optimal Feature Selection for the Classification of Hyperspectral Imagery Using Adaptive Spectral-Spatial Clustering
    Chidambaram, S.
    Sumathi, A.
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2020, 48 (05) : 813 - 832