SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATION

被引:0
|
作者
Akbari, D. [1 ]
Moradizadeh, M. [2 ]
Akbari, M. [3 ]
机构
[1] Univ Zabol, Coll Engn, Dept Surveying & Geomat Engn, Zabol, Iran
[2] Univ Isfahan, Fac Civil & Transportat Engn, Dept Geomat, Esfahan, Iran
[3] Univ Birjand, Coll Engn, Dept Civil Engn, Birjand, Iran
关键词
Remote sensing; Hyperspectral image; neural network; Hierarchical segmentation; Marker selection;
D O I
10.5194/isprs-archives-XLII-2-W12-1-2019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MIN) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network
    Zhang, Haokui
    Li, Ying
    Zhang, Yuzhu
    Shen, Qiang
    [J]. REMOTE SENSING LETTERS, 2017, 8 (05) : 438 - 447
  • [2] A spectral-spatial attention aggregation network for hyperspectral imagery classification
    Kuang, Wenlan
    Tu, Bing
    He, Wangquan
    Zhang, Guoyun
    Peng, Yishu
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (19) : 7551 - 7580
  • [3] Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network
    Li, Ying
    Zhang, Haokui
    Shen, Qiang
    [J]. REMOTE SENSING, 2017, 9 (01)
  • [4] Improved neural network classification of hyperspectral imagery using weighted genetic algorithm and hierarchical segmentation
    Akbari, Davood
    [J]. IET IMAGE PROCESSING, 2019, 13 (12) : 2169 - 2175
  • [5] MULTISCALE SPECTRAL-SPATIAL CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Long, Zhiling
    Du, Qian
    Younan, Nicolas H.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1051 - 1054
  • [6] A Spectral-Spatial Classification of Hyperspectral Images Based on the Algebraic Multigrid Method and Hierarchical Segmentation Algorithm
    Song, Haiwei
    Wang, Yi
    [J]. REMOTE SENSING, 2016, 8 (04)
  • [7] Spectral-spatial classification of hyperspectral imagery based on recurrent neural networks
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    [J]. REMOTE SENSING LETTERS, 2018, 9 (12) : 1118 - 1127
  • [8] Spectral-Spatial Classification of Hyperspectral Imagery Based on Deep Convolutional Network
    Zhang, Haokui
    Li, Ying
    [J]. 2016 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2018, : 44 - 47
  • [9] Convolutional neural network for spectral-spatial classification of hyperspectral images
    Gao, Hongmin
    Yang, Yao
    Li, Chenming
    Zhang, Xiaoke
    Zhao, Jia
    Yao, Dan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 8997 - 9012
  • [10] HYPERSPECTRAL CLASSIFICATION BASED ON SIAMESE NEURAL NETWORK USING SPECTRAL-SPATIAL FEATURE
    Zhao, Shizhi
    Li, Wei
    Du, Qian
    Ran, Qiong
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2567 - 2570