Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating

被引:19
|
作者
Liu, Yunjian [1 ]
Gao, Yanyong [1 ]
Wang, Qiliang [1 ]
Dou, Aichun [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Technol, Zhenjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery; Lithium-rich cathode material; Surface coating; Electrochemical performance; CATHODE MATERIAL; CYCLING STABILITY; RATE CAPABILITIES; LITHIUM;
D O I
10.1007/s11581-014-1108-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered cathode Li1.5Ni0.25Mn0.75O2.5 has been synthesized and coated by Li4Ti5O12. The pristine and coated Li1.5Ni0.25Mn0.75O2.5 powders are characterized by X-ray diffraction (XRD), indicating the materials remained the layered structure before and after coating. The coated Li4Ti5O12 has been detected by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (DEX). The electrochemical performance, especially rate performance of Li1.5Ni0.25Mn0.75O2.5 electrode, is improved effectively after Li4Ti5O12 coating. The first discharge capacity, coulombic efficiency, and capacity retention of Li4Ti5O12-coated Li1.5Ni0.25Mn0.75O2.5 electrode are 244 mA h g(-1), 81.5 %, and 98.3 % after 50 cycles, respectively. The Li4Ti5O12-coated Li1.5Ni0.25Mn0.75O2.5 electrode exhibits 108 mA h g(-1) at 10 A degrees C rate. Electrochemical impedance spectroscopy (EIS) results show that the charge transfer resistance (R (ct)) of Li1.5Ni0.25Mn0.75O2.5 electrode decreases after coating, which is due to the existence of Li4Ti5O12 with high lithium ion diffusion coefficient and suppression of the solid electrolyte interfacial (SEI) layer development and is responsible for the excellent rate capability and cyclic performance.
引用
收藏
页码:739 / 745
页数:7
相关论文
共 50 条
  • [31] Synthesis and electrochemical performance of spinel Li4Ti5O12 electrode material
    Ruan Yan-Li
    Tang Zhi-Yuan
    Peng Qing-Wen
    JOURNAL OF INORGANIC MATERIALS, 2006, 21 (04) : 873 - 879
  • [32] Effect of doping and crystallite size on the electrochemical performance of Li4Ti5O12
    Karhunen, Tommi
    Vaelikangas, Juho
    Torvela, Tiina
    Laehde, Anna
    Lassi, Ulla
    Jokiniemi, Jorma
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 659 : 132 - 137
  • [33] Electrochemical Characteristics Of Manufactured Material Li4Ti5O12
    Jirak, T.
    Vondrak, J.
    Sedlarikova, M.
    Spicak, P.
    ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 11), 2011, 32 (01): : 65 - 68
  • [34] Influence of Doping on the Electrochemical Properties of Li4Ti5O12
    Zhu, Ji-Ping
    Wang, Qing-Song
    Zhao, Jun-Jie
    Yang, Hong-Wei
    Yang, Guang
    ADVANCED SCIENCE LETTERS, 2011, 4 (02) : 477 - 483
  • [35] Controlling Size, Crystallinity, and Electrochemical Performance of Li4Ti5O12 Nanocrystals
    Shen, Yanbin
    Eltzholtz, Jakob R.
    Iversen, Bo B.
    CHEMISTRY OF MATERIALS, 2013, 25 (24) : 5023 - 5030
  • [36] Luminescence of Mn4+ activated Li4Ti5O12
    Medic, Mina
    Ristic, Zoran
    Kuzman, Sanja
    Dordevic, Vesna
    Vukoje, Ivana
    Brik, Mikhail G.
    Dramicanin, Miroslav D.
    JOURNAL OF LUMINESCENCE, 2020, 228
  • [37] Preparation and electrochemical performance of monodisperse Li4Ti5O12 hollow spheres
    He, Ningde
    Wang, Binshuai
    Huang, Junjie
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (07) : 1241 - 1246
  • [38] A Consideration of Electrolyte Additives for LiNi0.5Mn1.5O4/Li4Ti5O12 Li-Ion Cells
    Li, S. R.
    Sinha, N. N.
    Chen, C. H.
    Xu, K.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) : A2014 - A2020
  • [39] Heterogeneous intergrowth xLi1.5Ni0.25Mn0.75O2.5•(1-x)Li0.5Ni0.25Mn0.75O2 (0 ≤ x ≤ 1) composites: synergistic effect on electrochemical performance
    Zheng, Zhuo
    Hua, Wei-Bo
    Yu, Chong
    Zhong, Yan-Jun
    Xu, Bin-Bin
    Wang, Jia-zhao
    Zhong, Ben-He
    Zhang, Zhi-Ye
    DALTON TRANSACTIONS, 2015, 44 (32) : 14255 - 14264
  • [40] Study on Thermal Simulation of LiNi0.5Mn1.5O4/Li4Ti5O12 Battery
    Yang, Kai
    Shan, Zhongqiang
    Liu, Xuesheng
    Tan, Lizhi
    Wang, Shirong
    ENERGY TECHNOLOGY, 2021, 9 (05)