Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

被引:20
|
作者
David, Sabrina N. [1 ]
Zhai, Yao [2 ]
van der Zande, Arend M. [3 ,4 ]
O'Brien, Kevin [5 ]
Huang, Pinshane Y. [4 ]
Chenet, Daniel A. [3 ]
Hone, James C. [3 ]
Zhang, Xiang [5 ,6 ,7 ]
Yin, Xiaobo [1 ,2 ]
机构
[1] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA
[5] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Uc Berkeley, CA 94720 USA
[6] King Abdulaziz Univ, Dept Phys, Jeddah 21413, Saudi Arabia
[7] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
MOS2 ATOMIC LAYERS; GRAIN-BOUNDARIES; 2ND-HARMONIC GENERATION; GRAPHENE; STRENGTH;
D O I
10.1063/1.4930232
中图分类号
O59 [应用物理学];
学科分类号
摘要
Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of +/- 1 degrees with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] All-optical devices based on two-dimensional materials
    Xu Yi-Quan
    Wang Cong
    ACTA PHYSICA SINICA, 2020, 69 (18)
  • [32] Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting
    Andoshe, Dinsefa M.
    Jeon, Jong-Myeong
    Kim, Soo Young
    Jang, Ho Won
    ELECTRONIC MATERIALS LETTERS, 2015, 11 (03) : 323 - 335
  • [33] Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications
    Xie, L. M.
    NANOSCALE, 2015, 7 (44) : 18392 - 18401
  • [34] Two-dimensional transition metal dichalcogenide hybrid materials for energy applications
    Choudhary, Nitin
    Islam, Md Ashraful
    Kim, Jung Han
    Ko, Tae-Jun
    Schropp, Anthony
    Hurtado, Luis
    Weitzman, Dylan
    Zhai, Lei
    Jung, Yeonwoong
    NANO TODAY, 2018, 19 : 16 - 40
  • [35] Photoresponse of an Organic Semiconductor/Two-Dimensional Transition Metal Dichalcogenide Heterojunction
    Liu, Xiao
    Gu, Jie
    Ding, Kan
    Fan, Dejiu
    Hu, Xiaoer
    Tseng, Yu-Wen
    Lee, Yi-Hsien
    Menon, Vinod
    Forrest, Stephen R.
    NANO LETTERS, 2017, 17 (05) : 3176 - 3181
  • [36] Advances in transition metal dichalcogenide-based two-dimensional nanomaterials
    Monga, Divya
    Sharma, Surbhi
    Shetti, Nagaraj P.
    Basu, Soumen
    Reddy, Kakarla Raghava
    Aminabhavi, Tejraj M.
    MATERIALS TODAY CHEMISTRY, 2021, 19
  • [37] Optical spectroscopic detection of Schottky barrier height at a two-dimensional transition-metal dichalcogenide/metal interface
    Chen, Du
    Anantharaman, Surendra B.
    Wu, Jinyuan
    Qiu, Diana Y.
    Jariwala, Deep
    Guo, Peijun
    NANOSCALE, 2024, 16 (10) : 5169 - 5176
  • [38] Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy
    Gong, Linji
    Yan, Liang
    Zhou, Ruyi
    Xie, Jiani
    Wu, Wei
    Gu, Zhanjun
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (10) : 1873 - 1895
  • [39] Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications
    Huang, Haoxin
    Zha, Jiajia
    Li, Shisheng
    Tan, Chaoliang
    CHINESE CHEMICAL LETTERS, 2022, 33 (01) : 163 - 176
  • [40] Strain-engineering in two-dimensional transition metal dichalcogenide alloys
    Bendavid, Leah Isseroff
    Zhong, Yilin
    Che, Ziyi
    Konuk, Yagmur
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (22)