Truth, Partial Logic and Infinitary Proof Systems

被引:5
|
作者
Fischer, Martin [1 ]
Gratzl, Norbert [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich, Germany
基金
欧盟地平线“2020”;
关键词
Truth; Partial logic; Infinitary proof systems; Axiomatic theories; Minimal fixed-point;
D O I
10.1007/s11225-017-9751-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we apply proof theoretic methods used for classical systems in order to obtain upper bounds for systems in partial logic. We focus on a truth predicate interpreted in a Kripke style way via strong Kleene; whereas the aim is to connect harmoniously the partial version of Kripke-Feferman with its intended semantics. The method we apply is based on infinitary proof systems containing an omega-rule.
引用
收藏
页码:515 / 540
页数:26
相关论文
共 50 条
  • [41] Infinitary Action Logic with Multiplexing
    Kuznetsov, Stepan L.
    Speranski, Stanislav O.
    STUDIA LOGICA, 2023, 111 (02) : 251 - 280
  • [42] An approach to infinitary temporal proof theory
    Baratella, S
    Masini, A
    ARCHIVE FOR MATHEMATICAL LOGIC, 2004, 43 (08) : 965 - 990
  • [43] A Completeness Proof for a Regular Predicate Logic with Undefined Truth Value
    Valmari, Antti
    Hella, Lauri
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2023, 64 (01) : 61 - 93
  • [44] An approach to infinitary temporal proof theory
    Stefano Baratella
    Andrea Masini
    Archive for Mathematical Logic, 2004, 43 : 965 - 990
  • [45] Lukasiewicz logic: From proof systems to logic programming
    Metcalfe, George
    Olivetti, Nicola
    Gabbay, Dov
    LOGIC JOURNAL OF THE IGPL, 2005, 13 (05) : 561 - 585
  • [46] Infinitary equilibrium logic and strongly equivalent logic programs
    Harrison, Amelia
    Lifschitz, Vladimir
    Pearce, David
    Valverde, Agustin
    ARTIFICIAL INTELLIGENCE, 2017, 246 : 22 - 33
  • [47] Proof Systems for a Godel Modal Logic
    Metcalfe, George
    Olivetti, Nicola
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS, 2009, 5607 : 265 - +
  • [48] Proof systems for Moss' coalgebraic logic
    Bilkova, Marta
    Palmigiano, Alessandra
    Venema, Yde
    THEORETICAL COMPUTER SCIENCE, 2014, 549 : 36 - 60
  • [49] Proof systems for effectively propositional logic
    Navarro, Juan Antonio
    Voronkov, Andrei
    AUTOMATED REASONING, PROCEEDINGS, 2008, 5195 : 426 - 440
  • [50] MONOTONE CLASS THEOREM IN INFINITARY LOGIC
    KEISLER, HJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 64 (01) : 129 - 134