Separating NE from Some Nonuniform Nondeterministic Complexity Classes

被引:0
|
作者
Fu, Bin [1 ]
Li, Angsheng [2 ]
Zhang, Liyu [3 ]
机构
[1] Univ Texas Pan Amer, Dept Comp Sci, Edinburg, TX 78539 USA
[2] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
[3] Univ Texas Brownsville, Dept Comp & Informat Sci, Brownsville, TX 78520 USA
来源
基金
美国国家科学基金会;
关键词
COMPLETE-SETS; NP; REDUCIBILITIES; CONJECTURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the question whether NE can be separated from the reduction closures of tally sets, sparse sets and NP. We show that (1) NE not subset of R-no(1)-T(NP)(TALLY); (2)NE not subset of R-m(SN)(SPARSE); and (3) NE not subset of P-nk-T(NP)/n(k) for all k >= 1. Result (3) extends a previous result by Mocas to nonuniform reductions. We also investigate how different an NE-hard set is from an NP-set. We show that for any NP subset A of a many-one-hard set H for NE, there exists another NP subset A' of H such that A' superset of A and A' - A is not of sub-exponential density.
引用
收藏
页码:486 / +
页数:2
相关论文
共 50 条