Separating NE from some nonuniform nondeterministic complexity classes

被引:1
|
作者
Fu, Bin [1 ]
Li, Angsheng [2 ]
Zhang, Liyu [3 ]
机构
[1] Univ Texas Pan Amer, Dept Comp Sci, Edinburg, TX 78539 USA
[2] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
[3] Univ Texas Brownsville, Dept Comp & Informat Sci, Brownsville, TX 78520 USA
基金
美国国家科学基金会;
关键词
NE; NEXP; Nonuniform complexity class; Separation; Complexity; COMPLETE-SETS; NP; REDUCIBILITIES; CONJECTURE;
D O I
10.1007/s10878-010-9327-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate the question whether NE can be separated from the reduction closures of tally sets, sparse sets and NP. We show that (1) NE not subset of R-n0(1)-T(NP) (TALLY); (2) NE not subset of R-m(SN) (SPARSE); (3) NEXP not subset of P-nk-T(NK)/n(k) for all k >= 1; and (4) NE not subset of P-btt (NP circle plus SPARSE). Result (3) extends a previous result by Mocas to nonuniform reductions. We also investigate how different an NE- hard set is from an NP- set. We show that for any NP subset A of a many- one- hard set H for NE, there exists another NP subset A' of H such that A' superset of A and A' - A is not of sub-exponential density.
引用
收藏
页码:482 / 493
页数:12
相关论文
共 50 条