Imputation of missing values in DNA microarray gene expression data

被引:0
|
作者
Kim, H [1 ]
Golub, GH [1 ]
Park, H [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, a imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method base on Bayesian principal component analysis.
引用
收藏
页码:572 / 573
页数:2
相关论文
共 50 条
  • [21] Imputation of Missing Gene Expressions for DNA Microarray Using Particle Swarm Optimization
    Panse, Chanda
    Kshirsagar, Manali
    Raje, Dhananjay
    Wajgi, Dipak
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 3, 2016, 381 : 65 - 74
  • [22] A weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
    Ching, Wai-Ki
    Li, Limin
    Tsing, Nam-Kiu
    Tai, Ching-Wan
    Ng, Tuen-Wai
    Wong, Alice S.
    Cheng, Kwai-Wa
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 331 - 347
  • [23] Usage of Clustering and Weighted Nearest Neighbors for Efficient Missing Data Imputation of Microarray Gene Expression Dataset
    Dubey, Aditya
    Rasool, Akhtar
    [J]. ADVANCED THEORY AND SIMULATIONS, 2022, 5 (11)
  • [24] MICROARRAY MISSING DATA IMPUTATION USING REGRESSION
    Bayrak, Tuncay
    Ogul, Hasan
    [J]. 2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 68 - 73
  • [25] Missing value estimation for DNA microarray gene expression data: local least squares imputation (vol 21, pg 187, 2005)
    Kim, H
    Golub, GH
    Park, H
    [J]. BIOINFORMATICS, 2006, 22 (11) : 1410 - 1411
  • [26] Pre-processing of microarray gene expression data for classification using adaptive feature selection and imputation of non-ignorable missing values
    Priya, R. Devi
    Sivaraj, R.
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 16 (03) : 183 - 204
  • [27] Cluster-based KNN Missing Value Imputation for DNA Microarray Data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 445 - 450
  • [28] Dealing with missing values in large-scale studies: microarray data imputation and beyond
    Aittokallio, Tero
    [J]. BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) : 253 - 264
  • [29] DNA microarray data imputation and significance analysis of differential expression
    Jörnsten, R
    Wang, HY
    Welsh, WJ
    Ouyang, M
    [J]. BIOINFORMATICS, 2005, 21 (22) : 4155 - 4161
  • [30] A Novel Interpolation Based Missing Value Estimation Method to Predict Missing Values in Microarray Gene Expression Data
    Bose, Shilpi
    Das, Chandra
    Dutta, Sourav
    Chattopadhyay, Samiran
    [J]. PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, DEVICES AND INTELLIGENT SYSTEMS (CODLS), 2012, : 318 - 321