A grid-based subspace clustering algorithm for high-dimensional data streams

被引:0
|
作者
Sun, Yufen [1 ]
Lu, Yansheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430074, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many applications require the clustering of high-dimensional data streams. We propose a subspace clustering algorithm that can find clusters in different subspaces through one pass over a data stream. The algorithm combines the bottom-up grid-based method and top-down grid-based method. A uniformly partitioned grid data structure is used to summarize the data stream online. The top-down grid partition method is used o find the subspaces in which clusters locate. The errors made by the top-down partition procedure are eliminated by a mergence step in our algorithm. Our performance study with real datasets and synthetic dataset demonstrates the efficiency and effectiveness of our proposed algorithm.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 50 条
  • [21] ASCRClu: an adaptive subspace combination and reduction algorithm for clustering of high-dimensional data
    Fatehi, Kavan
    Rezvani, Mohsen
    Fateh, Mansoor
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (04) : 1651 - 1663
  • [22] Accelerating Density-Based Subspace Clustering in High-Dimensional Data
    Prinzbach, Juergen
    Lauer, Tobias
    Kiefer, Nicolas
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 474 - 481
  • [23] Synchronization-based scalable subspace clustering of high-dimensional data
    Junming Shao
    Xinzuo Wang
    Qinli Yang
    Claudia Plant
    Christian Böhm
    Knowledge and Information Systems, 2017, 52 : 83 - 111
  • [24] Clustering algorithm of high-dimensional data based on units
    School of In formation Engineering, Hubei Institute for Nationalities, Enshi 445000, China
    Jisuanji Yanjiu yu Fazhan, 2007, 9 (1618-1623): : 1618 - 1623
  • [25] Synchronization-based scalable subspace clustering of high-dimensional data
    Shao, Junming
    Wang, Xinzuo
    Yang, Qinli
    Plant, Claudia
    Boehm, Christian
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 52 (01) : 83 - 111
  • [26] A Systematic Review of Density Grid-Based Clustering for Data Streams
    Tareq, Mustafa
    Sundararajan, Elankovan A.
    Harwood, Aaron
    Abu Bakar, Azuraliza
    IEEE ACCESS, 2022, 10 : 579 - 596
  • [27] Subspace clustering of high-dimensional data: a predictive approach
    Brian McWilliams
    Giovanni Montana
    Data Mining and Knowledge Discovery, 2014, 28 : 736 - 772
  • [28] Subspace Clustering of High-Dimensional Data: An Evolutionary Approach
    Vijendra, Singh
    Laxman, Sahoo
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2013, 2013
  • [29] Density Conscious Subspace Clustering for High-Dimensional Data
    Chu, Yi-Hong
    Huang, Jen-Wei
    Chuang, Kun-Ta
    Yang, De-Nian
    Chen, Ming-Syan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (01) : 16 - 30
  • [30] Subspace clustering of high-dimensional data: a predictive approach
    McWilliams, Brian
    Montana, Giovanni
    DATA MINING AND KNOWLEDGE DISCOVERY, 2014, 28 (03) : 736 - 772