Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation

被引:138
|
作者
Nishizawa, Atsushi [1 ,2 ]
机构
[1] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan
[2] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA
关键词
MODIFIED DISPERSION-RELATIONS; RELATIVITY;
D O I
10.1103/PhysRevD.97.104037
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The direct detection of gravitational waves (GWs) from merging binary black holes and neutron stars marks the beginning of a new era in gravitational physics, and it brings forth new opportunities to test theories of gravity. To this end, it is crucial to search for anomalous deviations from general relativity in a model-independent way, irrespective of gravity theories, GW sources, and background spacetimes. In this paper, we propose a new universal framework for testing gravity with GWs, based on the generalized propagation of a GW in an effective field theory that describes modification of gravity at cosmological scales. Then, we perform a parameter estimation study, showing how well the future observation of GWs can constrain the model parameters in the generalized models of GW propagation.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Superconducting accelerometers, gravitational-wave transducers, and gravity gradiometers
    Paik, HJ
    SQUID SENSORS: FUNDAMENTALS, FABRICATION AND APPLICATIONS, 1996, 329 : 569 - 598
  • [22] Measuring Gravitational-Wave Propagation Speed with Multimessenger Observations
    Nishizawa, Atsushi
    Nakamura, Takashi
    11TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 11), 2016, 716
  • [23] ASTROD, ASTROD I and their gravitational-wave sensitivities
    Ni, WT
    Shiomi, S
    Liao, AC
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S641 - S646
  • [24] Testing gravity with gravitational wave friction and gravitational slip
    Matos, Isabela S.
    Bellini, Emilio
    Calvao, Mauricio O.
    Kunz, Martin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (05):
  • [25] PRECISION EPHEMERIDES FOR GRAVITATIONAL-WAVE SEARCHES. I. Sco X-1
    Galloway, Duncan K.
    Premachandra, Sammanani
    Steeghs, Danny
    Marsh, Tom
    Casares, Jorge
    Cornelisse, Remon
    ASTROPHYSICAL JOURNAL, 2014, 781 (01):
  • [26] Constraining Screened Modified Gravity with Spaceborne Gravitational-wave Detectors
    Niu, Rui
    Zhang, Xing
    Liu, Tan
    Yu, Jiming
    Wang, Bo
    Zhao, Wen
    ASTROPHYSICAL JOURNAL, 2020, 890 (02):
  • [27] Distortion of gravitational-wave packets due to their self-gravity
    Kocsis, Bence
    Loeb, Abraham
    PHYSICAL REVIEW D, 2007, 76 (08)
  • [28] Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds
    Maselli, Andrea
    Marassi, Stefania
    Ferrari, Valeria
    Kokkotas, Kostas
    Schneider, Raffaella
    PHYSICAL REVIEW LETTERS, 2016, 117 (09)
  • [29] A generalized precession parameter χp to interpret gravitational-wave data
    Gerosa, Davide
    Mould, Matthew
    Gangardt, Daria
    Schmidt, Patricia
    Pratten, Geraint
    Thomas, Lucy M.
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [30] Longitudinal wave propagation. Part I - Comparison of rod theories
    Krawczuk, Marek
    Grabowska, Joanna
    Palacz, Magdalena
    JOURNAL OF SOUND AND VIBRATION, 2006, 295 (3-5) : 461 - 478