ManiDec: Manifold Constrained Low-Rank and Sparse Decomposition

被引:4
|
作者
Liu, Jingjing [1 ,2 ]
He, Donghui [1 ]
Zeng, Xiaoyang [1 ]
Wang, Mingyu [1 ]
Xiu, Xianchao [3 ]
Liu, Wanquan [4 ]
Li, Wenhong [1 ]
机构
[1] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 201210, Peoples R China
[2] Shanghai Univ Elect Power, Sch Comp Sci & Technol, Shanghai 200090, Peoples R China
[3] Peking Univ, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
[4] Curtin Univ, Dept Comp, Perth, WA 6102, Australia
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Low-rank and sparse decomposition; image alignment; manifold constraint; non-convex optimization; FACE RECOGNITION; DIMENSIONALITY REDUCTION; ROBUST-PCA; IMAGE; REGRESSION; ALGORITHM; ALIGNMENT; MODELS;
D O I
10.1109/ACCESS.2019.2935235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low-rank and sparse decomposition based image alignment has recently become an important research topic in the computer vision community. However, the reconstruction process often suffers from the perturbations caused by variations of the input samples. The reason behind is that the consistency of the learned low-rank and sparse structures for similar input samples is not well addressed in the existing literature. In this paper, a novel framework that embeds the manifold constraint into low-rank and sparse decomposition is proposed. Particularly, the proposed approach attempts to solve the original optimization problem directly and force the optimization process to satisfy the structure preservation requirement. Therefore, this novel manifold constrained low-rank and sparse decomposition (ManiDec) can consistently integrate the manifold constraint during the non-convex optimization process, and it can contribute a better solution which is robust to the variance of the input samples. Numerical comparisons between our proposed ManiDec and some state-of-the-art solvers, on several accessible databases, are presented to demonstrate its efficiency and effectiveness. In fact, to the best of our knowledge, this is the first time to integrate the manifold constraint into a non-convex framework, which has demonstrated the superiority of performance.
引用
收藏
页码:112939 / 112952
页数:14
相关论文
共 50 条
  • [21] SPEECH ENHANCEMENT BY SPARSE, LOW-RANK, AND DICTIONARY SPECTROGRAM DECOMPOSITION
    Chen, Zhuo
    Ellis, Daniel P. W.
    2013 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2013,
  • [22] A Joint Sparse and Low-Rank Decomposition for Pansharpening of Multispectral Images
    Yin, Haitao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (06): : 3545 - 3557
  • [23] Speech Denoising via Low-Rank and Sparse Matrix Decomposition
    Huang, Jianjun
    Zhang, Xiongwei
    Zhang, Yafei
    Zou, Xia
    Zeng, Li
    ETRI JOURNAL, 2014, 36 (01) : 167 - 170
  • [24] Nonconvex Splitting for Regularized Low-Rank plus Sparse Decomposition
    Chartrand, Rick
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5810 - 5819
  • [25] Low-Rank/Sparse-Inverse Decomposition via Woodbury
    Fuentes, Victor K.
    Lee, Jon
    OPERATIONS RESEARCH PROCEEDINGS 2016, 2018, : 111 - 117
  • [26] Low-Rank and Sparse Matrix Decomposition for Genetic Interaction Data
    Wang, Yishu
    Yang, Dejie
    Deng, Minghua
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [27] The application of low-rank and sparse decomposition method in the field of climatology
    Gupta, Nitika
    Bhaskaran, Prasad K.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2018, 132 (1-2) : 301 - 311
  • [28] Truncated γ norm-based low-rank and sparse decomposition
    Zhenzhen Yang
    Yongpeng Yang
    Lu Fan
    Bing-Kun Bao
    Multimedia Tools and Applications, 2022, 81 : 38279 - 38295
  • [29] Background Subtraction Based on Low-Rank and Structured Sparse Decomposition
    Liu, Xin
    Zhao, Guoying
    Yao, Jiawen
    Qi, Chun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (08) : 2502 - 2514
  • [30] Radio Tomographic Imaging Based on Low-Rank and Sparse Decomposition
    Tan, Jiaju
    Zhao, Qili
    Guo, Xuemei
    Zhao, Xin
    Wang, Guoli
    IEEE ACCESS, 2019, 7 : 50223 - 50231