Influence of tool rotation rates on temperature profiles and mechanical properties of friction stir welded AZ31 magnesium alloy

被引:42
|
作者
Wang, Weideng [1 ]
Deng, Dean [1 ]
Mao, Zhitao [1 ]
Tong, Yangang [1 ]
Ran, Yang [2 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, 174 Shazheng St, Chongqing 400044, Peoples R China
[2] Chongqing Inst Opt Machinery, Chongqing 401123, Peoples R China
关键词
Friction stir welding; Magnesium alloys; Temperature filed; Mechanical properties; AL-ZN ALLOY; GRAIN-SIZE; STAINLESS-STEEL; HEAT-TRANSFER; TEXTURE; MICROSTRUCTURE; PARAMETERS;
D O I
10.1007/s00170-016-8918-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The influence of tool rotation rates on temperature profiles, microstructure, and mechanical properties of friction stir welded AZ31 magnesium alloys was investigated experimentally and numerically. AZ31 plates with a thickness of 8 mm were joined by friction stir welding process with five different rotation rates (from 800 to 1600 rpm) and a constant travel speed of 120 mm/min. Thermocouples were embedded at three representative positions on the advancing side of the FSW joint to record the temperature histories. The friction stir welded joints were trans-sectioned for microstructural and hardness characterization. The mechanical properties of the FSW joints were evaluated by means of uniaxial tensile tests and Charpy V-notch impact tests at room temperature. In addition, based on ABAQUS code, a full 3D finite element (FE) model was developed to simulate the temperature field during the FSW process. The results show that the peak temperature calculated by FE model in the stir zone increases with tool rotation rates. A superior comprehensive mechanical performance of the FSW joints has been achieved at a moderate tool rotation rate of 1200 rpm. The peak temperature calculated by FE model in this case is 495 A degrees C, and the joint efficiency is up to 90.2 %.
引用
收藏
页码:2191 / 2200
页数:10
相关论文
共 50 条
  • [31] Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy
    Wang, Wen
    Wang, Kuaishe
    Guo, Qiang
    Wu, Nan
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2012, 41 (09): : 1522 - 1526
  • [32] Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Cast AZ31 Magnesium Alloy
    Wang Wen
    Wang Kuaishe
    Guo Qiang
    Wu Nan
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 (09) : 1522 - 1526
  • [33] Friction Stir Extrusion of AZ31 Magnesium Alloy Rod
    Al-Buainain, Maryam
    Shunmugasamy, Vasanth C.
    Mansoor, Bilal
    MAGNESIUM TECHNOLOGY 2022, 2022, : 207 - 212
  • [34] Friction stir processing of commercial AZ31 magnesium alloy
    Darras, B. M.
    Khraisheh, M. K.
    Abu-Farha, F. K.
    Omar, M. A.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 191 (1-3) : 77 - 81
  • [35] Submerged friction stir processing of AZ31 Magnesium alloy
    Darras, Basil
    Kishta, Emad
    MATERIALS & DESIGN, 2013, 47 : 133 - 137
  • [36] Microstructure and Properties of Friction Stir Processed Cast AZ31 Magnesium Alloy
    Wang Kuaishe
    Wang Wen
    Guo Wei
    Wang Wenli
    Wu Jialei
    RARE METAL MATERIALS AND ENGINEERING, 2010, 39 (07) : 1275 - 1278
  • [37] The weldability of AZ31 magnesium alloy by friction stir welding
    Aydin, M.
    Bulut, R.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2010, 48 (02): : 97 - 103
  • [38] Experimental investigations on the effect of tool rotational speed on mechanical properties and microstructure of friction stir welded AZ31 Mg alloy
    Sucharitha, M.
    Sankar, B. Ravi
    Umamaheswarrao, P.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 3455 - 3459
  • [39] Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy
    Zhou, L.
    Li, G. H.
    Zha, G. D.
    Shu, F. Y.
    Liu, H. J.
    Feng, J. C.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2018, 23 (07) : 596 - 605
  • [40] Microstructural development in friction welded AZ31 magnesium alloy
    Fukumoto, Shinji
    Tanaka, Soshi
    Ono, Toshitsup
    Tsubakino, Harushige
    Tomita, Tomoki
    Aritoshi, Masatoshi
    Okita, Kozo
    MATERIALS TRANSACTIONS, 2006, 47 (04) : 1071 - 1076