Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future

被引:188
|
作者
Fennell, John F., Jr. [1 ,2 ]
Liu, Sophie F. [1 ,2 ]
Azzarelli, Joseph M. [1 ,2 ]
Weis, Jonathan G. [1 ,2 ]
Rochat, Sebastien [1 ,2 ]
Mirica, Katherine A. [1 ,2 ]
Ravnsbaek, Jens B. [1 ,2 ]
Swager, Timothy M. [1 ,2 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
metal oxides; nanocarbons; nanowires; sensors; transductionmechanism; WALLED CARBON NANOTUBES; LABEL-FREE DETECTION; CONDUCTING POLYMER NANOWIRES; MOLECULAR WIRE APPROACH; GAS-SENSING PROPERTIES; ELECTRICAL DETECTION; THIN-FILMS; OXIDE NANOSTRUCTURES; CONJUGATED POLYMERS; SELECTIVE DETECTION;
D O I
10.1002/anie.201505308
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemiresistive sensors are becoming increasingly important as they offer an inexpensive option to conventional analytical instrumentation, they can be readily integrated into electronic devices, and they have low power requirements. Nanowires (NWs) are a major theme in chemosensor development. High surface area, interwire junctions, and restricted conduction pathways give intrinsically high sensitivity and new mechanisms to transduce the binding or action of analytes. This Review details the status of NW chemosensors with selected examples from the literature. We begin by proposing a principle for understanding electrical transport and transduction mechanisms in NW sensors. Next, we offer the reader a review of device performance parameters. Then, we consider the different NW types followed by a summary of NW assembly and different device platform architectures. Subsequently, we discuss NW functionalization strategies. Finally, we propose future developments in NW sensing to address selectivity, sensor drift, sensitivity, response analysis, and emerging applications.
引用
收藏
页码:1266 / 1281
页数:16
相关论文
共 50 条
  • [31] A roadmap for the future
    Gianotti, Fabiola
    Giudice, Gian Francesco
    NATURE PHYSICS, 2020, 16 (10) : 997 - 998
  • [32] A review on gold nanowire based SERS sensors for chemicals and biological molecules
    Akter, Rashida
    Lee, Hyuck Jin
    Kim, Toeun
    Choi, Jin Woo
    Kim, Hongki
    ANALYTICAL SCIENCE AND TECHNOLOGY, 2024, 37 (04): : 201 - 210
  • [33] Dryland Food Security in Ethiopia: Current Status, Opportunities, and a Roadmap for the Future
    Peng, Yu
    Hirwa, Hubert
    Zhang, Qiuying
    Wang, Guoqin
    Li, Fadong
    SUSTAINABILITY, 2021, 13 (11)
  • [34] Colorimetric Sensors for Chemical and Biological Sensing Applications
    Wu, Yu
    Feng, Jing
    Hu, Guang
    Zhang, En
    Yu, Huan-Huan
    SENSORS, 2023, 23 (05)
  • [35] Label-free biological and chemical sensors
    Hunt, Heather K.
    Armani, Andrea M.
    NANOSCALE, 2010, 2 (09) : 1544 - 1559
  • [36] Detection principles of biological and chemical FET sensors
    Kaisti, Matti
    BIOSENSORS & BIOELECTRONICS, 2017, 98 : 437 - 448
  • [37] Photo-electric chemical and biological sensors
    Arrieta, RT
    Huebner, JS
    CHEMICAL AND BIOLOGICAL SENSING, 2000, 4036 : 132 - 142
  • [38] Functionalized Silicon Surfaces for Biological and Chemical Sensors
    Touahir, L.
    Sam, S.
    Moraillon, A.
    Ozanam, F.
    Chazalviel, J. -N.
    Allongue, P.
    de Villeneuve, C. Henry
    Gabouze, N.
    Djebbar, S.
    Gouget-Laemmel, A. C.
    SENSOR LETTERS, 2010, 8 (03) : 447 - 456
  • [39] Polyaromatic luminescent nanocrystals for chemical and biological sensors
    Botzung-Appert, E
    Monnier, V
    Duong, TH
    Pansu, R
    Ibanez, A
    CHEMISTRY OF MATERIALS, 2004, 16 (09) : 1609 - 1611
  • [40] Biological and chemical sensors based on graphene materials
    Liu, Yuxin
    Dong, Xiaochen
    Chen, Peng
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2283 - 2307