Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future

被引:188
|
作者
Fennell, John F., Jr. [1 ,2 ]
Liu, Sophie F. [1 ,2 ]
Azzarelli, Joseph M. [1 ,2 ]
Weis, Jonathan G. [1 ,2 ]
Rochat, Sebastien [1 ,2 ]
Mirica, Katherine A. [1 ,2 ]
Ravnsbaek, Jens B. [1 ,2 ]
Swager, Timothy M. [1 ,2 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
metal oxides; nanocarbons; nanowires; sensors; transductionmechanism; WALLED CARBON NANOTUBES; LABEL-FREE DETECTION; CONDUCTING POLYMER NANOWIRES; MOLECULAR WIRE APPROACH; GAS-SENSING PROPERTIES; ELECTRICAL DETECTION; THIN-FILMS; OXIDE NANOSTRUCTURES; CONJUGATED POLYMERS; SELECTIVE DETECTION;
D O I
10.1002/anie.201505308
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemiresistive sensors are becoming increasingly important as they offer an inexpensive option to conventional analytical instrumentation, they can be readily integrated into electronic devices, and they have low power requirements. Nanowires (NWs) are a major theme in chemosensor development. High surface area, interwire junctions, and restricted conduction pathways give intrinsically high sensitivity and new mechanisms to transduce the binding or action of analytes. This Review details the status of NW chemosensors with selected examples from the literature. We begin by proposing a principle for understanding electrical transport and transduction mechanisms in NW sensors. Next, we offer the reader a review of device performance parameters. Then, we consider the different NW types followed by a summary of NW assembly and different device platform architectures. Subsequently, we discuss NW functionalization strategies. Finally, we propose future developments in NW sensing to address selectivity, sensor drift, sensitivity, response analysis, and emerging applications.
引用
收藏
页码:1266 / 1281
页数:16
相关论文
共 50 条
  • [1] The biological legacy of sulfur: A roadmap to the future
    Olson, Kenneth R.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2021, 252
  • [2] Development of Si Nanowire Chemical Sensors
    Zaborowski, M.
    Dumania, P.
    Tomaszewski, D.
    Czupryniak, J.
    Ossowski, T.
    Kokot, M.
    Paletko, P.
    Gotszalk, T.
    Grabiec, P.
    26TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS, EUROSENSOR 2012, 2012, 47 : 1053 - 1056
  • [3] Chemical and biological sensors
    Nylander, C.
    1600, (18):
  • [4] CHEMICAL AND BIOLOGICAL SENSORS
    NYLANDER, C
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1985, 18 (09): : 736 - 750
  • [5] Nanostructured Ceramic Materials for Chemical Sensors: Present Status and Future Prospects
    Bhattacharyya, P.
    Basu, S.
    TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY, 2010, 69 (01) : 1 - 23
  • [6] Gate-refreshable nanowire chemical sensors
    Fan, ZY
    Lu, JG
    APPLIED PHYSICS LETTERS, 2005, 86 (12) : 1 - 3
  • [7] Metal oxide nanowire chemical and biochemical sensors
    Comini, Elisabetta
    Baratto, Camilla
    Faglia, Guido
    Ferroni, Matteo
    Ponzoni, Andrea
    Zappa, Dario
    Sberveglieri, Giorgio
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (21) : 2911 - 2931
  • [8] Metal oxide nanowire chemical and biochemical sensors
    Elisabetta Comini
    Camilla Baratto
    Guido Faglia
    Matteo Ferroni
    Andrea Ponzoni
    Dario Zappa
    Giorgio Sberveglieri
    Journal of Materials Research, 2013, 28 : 2911 - 2931
  • [9] Nanowire-Based Sensors for Biological and Medical Applications
    Wang, Zongjie
    Lee, Suwon
    Koo, Kyo-in
    Kim, Keekyoung
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2016, 15 (03) : 186 - 199
  • [10] CHEMICAL SENSORS, PAST AND FUTURE
    YAMAUCHI, S
    DENKI KAGAKU, 1990, 58 (12): : 1085 - 1086