Nonstationary signal analysis of magnetic islands in plasmas

被引:11
|
作者
Taylor, ED [1 ]
Cates, C [1 ]
Mauel, ME [1 ]
Maurer, DA [1 ]
Nadle, D [1 ]
Navratil, GA [1 ]
Shilov, M [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 1999年 / 70卷 / 12期
关键词
D O I
10.1063/1.1150110
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Rotating magnetic islands produce fluctuations on a variety of diagnostics in magnetic fusion energy plasmas. The analysis of these fluctuations requires the calculation of the amplitude, phase, and frequency of the oscillations. These three spectral quantities generally evolve in time, necessitating nonstationary signal analysis techniques. The Hilbert transform offers an efficient and accurate method of calculating these three quantities from one diagnostic signal. This feature allows the Hilbert transform to determine the success of the active rotation control of magnetic islands, and to calculate the profile of the diagnostic measurements in a frame of reference co-rotating with the magnetic island. Comparisons to quadrature and spectrogram techniques demonstrate the accuracy of the Hilbert transform method. (C) 1999 American Institute of Physics. [S0034-6748(99)04812-1].
引用
收藏
页码:4545 / 4551
页数:7
相关论文
共 50 条
  • [41] Effect of local ExB flow shear on the stability of magnetic islands in tokamak plasmas
    Fitzpatrick, R.
    Waelbroeck, F. L.
    PHYSICS OF PLASMAS, 2009, 16 (05)
  • [42] Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas
    K. Ida
    T. Kobayashi
    T. E. Evans
    S. Inagaki
    M. E. Austin
    M. W. Shafer
    S. Ohdachi
    Y. Suzuki
    S.-I. Itoh
    K. Itoh
    Scientific Reports, 5
  • [43] Effect of flow damping on drift-tearing magnetic islands in tokamak plasmas
    Fitzpatrick, R.
    Waelbroeck, F. L.
    PHYSICS OF PLASMAS, 2009, 16 (07)
  • [44] Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas
    Ida, K.
    Kobayashi, T.
    Evans, T. E.
    Inagaki, S.
    Austin, M. E.
    Shafer, M. W.
    Ohdachi, S.
    Suzuki, Y.
    Itoh, S. -I.
    Itoh, K.
    SCIENTIFIC REPORTS, 2015, 5
  • [45] Nonstationary signal analysis using the RI-Spline wavelet
    Zhang, Z
    Kawabata, H
    Liu, ZQ
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2001, 8 (04) : 351 - 362
  • [46] Stationary, Cyclostationary and Nonstationary Analysis of GNSS Signal Propagation Channel
    Satyanarayana, Shashank
    PROCEEDINGS OF THE 23RD INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2010), 2010, : 476 - 488
  • [47] Nonlinear and nonstationary signal analysis for distinction of crackles in lung sounds
    Charleston-Villalobos, Sonia
    Gonzalez-Camarena, Ramon
    Chi-Lem, Georgina
    Aljama-Corrales, Tomas
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2007, 26 (01): : 40 - 47
  • [48] NONSTATIONARY SIGNAL ANALYSIS BY 2ND-ORDER POLYSPECTRA
    MAIWALD, D
    MOLLE, JWD
    BOHME, JF
    FREQUENZ, 1995, 49 (7-8) : 174 - 180
  • [49] SINGLE MOTOR UNIT MYOELECTRIC SIGNAL ANALYSIS WITH NONSTATIONARY DATA
    ENGLEHART, KB
    PARKER, PA
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1994, 41 (02) : 168 - 180
  • [50] Nonstationary signal analysis using the RI-Spline wavelet
    Zhang, Z
    Toda, H
    Horihat, S
    Miyake, T
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2006, 13 (02) : 149 - 161